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Goal: intuitive understanding of ML methods and 
how to use them

❏ we’ll use scikit-learn: http://scikit-learn.org/stable/

❏ brief homeworks after each class, both critical thinking and using scikit-learn

❏ video tape each lecture and put videos on Youtube after each class
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How can ML help neuroscientists?
❏ Deal with large number of sensors/recording sites

❏ investigate high-dimensional representations
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How can ML help neuroscientists?
❏ Evaluate results

❏ cross validation (how generalizable are our results?)
❏ nearly assumption-free significance testing (are the results different from chance?)

❏ Complex data-driven hypotheses of brain processing
❏ advanced topics: latent variable models, reinforcement learning, deep learning
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Today: classification and regression
❏ Deal with large number of sensors/recording sites

❏ investigate high-dimensional representations
❏ classification (what does this high-dimensional data represent?)
❏ regression (how does it represent it? can we predict a different representation?)
❏ model selection (what model would best describe this high dimensional data?)
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Today: classification and regression 
❏ Classification methods:

❏ naive Bayes
❏ support vector machine (SVM)
❏ k-nearest-neighbors (kNN)

❏ Regression:
❏ linear
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Classification: example problems
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Classify word person 
is reading from fMRI 
recordings

Classify DTI fiber tracks 
into anatomical bundles

Classify direction of desired movement 
from motor cortex recordings



What is a classifier?
❏ Any algorithm that can assign a class label to each data instance
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What is a classifier?
❏ Any algorithm that can assign a class label to each data instance

❏ Input: feature vector for each data instance
❏ Output: class label
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Classifiers divide in roughly 3 types
❏ Generative

❏ Build a generative statistical model
❏ Naive Bayes

❏ Discriminative
❏ Directly estimate a decision rule or boundary

❏ SVM

❏ Instance based classifiers
❏ Use observations directly without building a model

❏ kNN
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How do most classifiers work? 3 main steps!
Assume: Make an assumption about the data

❏ e.g. assume all values of voxels recorded during the presentation of the 
same word follow a Gaussian distribution
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How do most classifiers work? 3 main steps!
Assume: Make an assumption about the data

❏ e.g. assume all values of voxels recorded during the presentation of the 
same word follow a Gaussian distribution

Train: Use data to estimate (learn) the parameters of this model
❏ e.g. estimate the mean and covariance of the Gaussian for each word

Test: Apply learned model to new data
❏ e.g. using the learned mean and covariance for each word class, 

calculate how likely it is for a new data instance to belong to each class
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Problem with train step: too many parameters to 
estimate can lead to their inaccurate estimation

Let voxels have only 2 possible values: 0 and 1
Let us be interested in a region of interest with 30 voxels
Let the person only read 2 words: “chair” and “celery”

❏ Parameter = P(w = “chair”|v1=0,v2=1,...v29=1,v30=0) =>
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Problem with train step: too many parameters to 
estimate can lead to their inaccurate estimation

Let voxels have only 2 possible values: 0 and 1
Let us be interested in a region of interest with 30 voxels
Let the person only read 2 words: “chair” and “celery”

❏ Parameter = P(w = “chair”|v1=0,v2=1,...v29=1,v30=0) => ~230 parameters
❏ Need more instances than parameters to estimate correctly => lots of data!
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Reduce number of parameters using Bayes rule

❏ How many parameters for P(v1,v2,...v29,v30|w)?  ~230x2! 
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Reduce number of parameters using Bayes rule

❏ How many parameters for P(v1,v2,...v29,v30|w)?  ~230x2! 
❏ Naive Bayes assumption: all features are independent given a class

❏ Now, how many parameters for P(v1,v2,...v29,v30|w)?   2x30 = 60
❏ Huge reduction of parameters, but a very strong assumption
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What about when features aren’t discrete? Gaussian 
Naive Bayes

❏ Now infinite possibilities for <v1,v2,...v29,v30>, not just 230
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Gaussian Naive Bayes: estimation of parameters

❏ Want to estimate ᶞi,chair , ᶥi,chair, ᶞi,celery , ᶥi,celery for all i
❏ ᶞ1,chair = average the values of v1 during all presentations of “chair”
❏ ᶥ1,chair= find standard deviation of the values of v1 during all presentations of      

“chair”

37



Gaussian Naive Bayes: testing
❏ Given new values of <v1,v2,...v29,v30>, predict what word was shown to the 

subject
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Gaussian Naive Bayes: testing
❏ Given new values of <v1,v2,...v29,v30>, predict what word was shown to the 

subject
❏ Using the estimated ᶞi,chair , ᶥi,chair, ᶞi,celery , ᶥi,celery, calculate:

❏ Then, using the Naive Bayes assumption and the Bayes theorem, calculate P
(w = chair|V = NEW) and P(w =celery |V = NEW)

❏ Assign the class with higher probability to the new data instance 
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Naive Bayes takeaways
❏ Reduced number of parameters to estimate
❏ Fast training
❏ Can be used to quickly classify very high-dimensional data instances
❏ But makes strong conditional independence assumption
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Support Vector Machines (SVM): motivation
Want to directly learn a classification boundary, but which boundary is better?
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SVM: choosing a decision boundary with the largest 
margin
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What are support vectors?

❏ Data points that are a margin-width away from the decision boundary
❏ Only need to store the support vectors to predict labels for new points => 

efficiency
45



What if data isn’t linearly separable? Allow error in 
classification => soft-margin SVM

❏ Trade-off between maximizing the margin and minimizing the number of 
mistakes on the training data
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Can we do more? Represent features in higher 
dimension to encourage separability
❏ Represent the features in higher dimension => easier to separate
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Can we do more? Represent features in higher 
dimension to encourage separability
❏ Represent the features in higher dimension => easier to separate
❏ Reformulate the original SVM problem to one that depends not on the 

features themselves, but on the dot product of the new representations of the 
features

❏ This dot product is equal to a kernel function evaluated at the features
❏ Benefit = don’t have to store high-dimensional new representations of features, just need to 

have a way to evaluate the kernel function
❏ One common kernel is the Gaussian kernel (RBF):
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What if we have multiple classes? Multi-class SVM

❏ Margin = gap between correct class and nearest other class
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SVM takeaways
❏ Directly estimates the decision boundary
❏ Space-efficient
❏ Can handle non-linearly separable data through various kernel functions
❏ Does not directly output probabilities for classifications
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k-Nearest Neighbors classifier: even fewer 
assumptions!

❏ Does not assume a model = non-parametric method
❏ Number of parameters scale with the number of training data
❏ Free from strong distributional assumptions that are not satisfied in practice
❏ But needs lot of data to learn complex models
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kNN: an intuitive algorithm
❏ We wish to classify a test instance
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kNN: an intuitive algorithm
❏ We wish to classify a test instance
❏ Find the k closest training data instances to the test instance
❏ Assign test instance with label of the majority within the k closest instances
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How to choose k?
❏ Trade-off between stability and accuracy

❏ Larger k is more stable
❏ Smaller k is more accurate

❏ Depends on type and amount of training data
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kNN in practice: classifying DTI fibers into bundles

58



kNN takeaways:
❏ Requires a lot of data
❏ Requires storage and computation on entire data set
❏ Powerful classification technique if enough data available, and if there are no 

problems with data storage
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Classification vs regression
❏ Classification = output is class label (“chair”, “celery”)

❏ classify the word a subject was reading from fMRI voxels 

❏ Regression = output is continuous value (<0.2, 0.3,...,0.9>,<0.7,0.3,...,0.1>)
❏ predict next fMRI voxel values from previous voxel values
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Regression: general
❏ Choose a parametric form for P(labels|data;ᶚ)
❏ Derive a learning algorithm to estimate parameters ᶚ
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Linear regression
❏ Let X = data, Y = labels, and W = regression weights
❏ Choose linear model for P(Y|X): Y = W*X + errors
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Linear regression
❏ Let X = data, Y = labels, and W = regression weights
❏ Choose linear model for P(Y|X): Y = W*X + errors
❏ Assume errors are normally distributed with 0 mean, and std ᶥ

❏ P(Y|X) = N(W*X , ᶥ)
❏ Want to learn W from training data

❏ Since: ,

❏ To solve, take derivative and set equal to 0. Closed-form solution available for 
simple f(x), otherwise use gradient descent 66



Takeaways
❏ 3 types of classifiers

❏ Generative (e.g. Naive Bayes)
❏ Make strong assumptions about data
❏ Faster and need less data to estimate parameters (though, these may be wrong)
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❏ 3 types of classifiers

❏ Generative (e.g. Naive Bayes)
❏ Make strong assumptions about data
❏ Faster and need less data to estimate parameters (though, these may be wrong)

❏ Discriminative (e.g. SVM)
❏ Need many data instances, especially when data is high-dimensional
❏ More adaptive to the actual data (few assumptions)

❏ Instance based classifiers (e.g. kNN)
❏ Require storage and computation on entire data set

❏ Non-parametric so very adaptive to data, and powerful when decision boundary is 
irregular

❏ Regression can be used to predict continuous values
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Next time: model selection & dimensionality reduction
❏ Deal with large number of sensors/recording sites

❏ investigate high-dimensional representations
❏ classification (what does this high-dimensional data represent?)
❏ regression (how does it represent it? can we predict a different representation?)
❏ model selection (what model would best describe this high dimensional data?)

❏ uncover few underlying processes that interact in complex ways
❏ dimensionality reduction techniques 71


