Machine Learning for Neuroscience

06/07/2016 Mariya Toneva mariya@cmu.edu

Some figures derived from slides by Tom Mitchell, Aarti Singh, Ziv Bar-Joseph, and Alona Fyshe

Goal: intuitive understanding of ML methods and how to use them

- we'll use scikit-learn: http://scikit-learn.org/stable/
- □ brief homeworks after each class, both critical thinking and using scikit-learn
- video tape each lecture and put videos on Youtube after each class

☐ Deal with large number of sensors/recording sites

investigate high-dimensional representations

- investigate high-dimensional representations
 - □ classification (what does this high-dimensional data represent?)

- investigate high-dimensional representations
 - classification (what does this high-dimensional data represent?)
 - regression (how does it represent it? can we predict a different representation?)

- investigate high-dimensional representations
 - classification (what does this high-dimensional data represent?)
 - regression (how does it represent it? can we predict a different representation?)
 - model selection (what model would best describe this high dimensional data?)

- investigate high-dimensional representations
 - classification (what does this high-dimensional data represent?)
 - regression (how does it represent it? can we predict a different representation?)
 - model selection (what model would best describe this high dimensional data?)
- uncover few underlying processes that interact in complex ways

- investigate high-dimensional representations
 - classification (what does this high-dimensional data represent?)
 - regression (how does it represent it? can we predict a different representation?)
 - model selection (what model would best describe this high dimensional data?)
- uncover few underlying processes that interact in complex ways
 - dimensionality reduction techniques

Evaluate results

- Evaluate results
 - cross validation (how generalizable are our results?)

- Evaluate results
 - cross validation (how generalizable are our results?)
 - nearly assumption-free significance testing (are the results different from chance?)

- Evaluate results
 - cross validation (how generalizable are our results?)
 - nearly assumption-free significance testing (are the results different from chance?)
- Complex data-driven hypotheses of brain processing

- Evaluate results
 - cross validation (how generalizable are our results?)
 - nearly assumption-free significance testing (are the results different from chance?)
- Complex data-driven hypotheses of brain processing
 - advanced topics: latent variable models, reinforcement learning, deep learning

Today: classification and regression

- investigate high-dimensional representations
 - □ classification (what does this high-dimensional data represent?)
 - regression (how does it represent it? can we predict a different representation?)
 - model selection (what model would best describe this high dimensional data?)
- uncover few underlying processes that interact in complex ways
 - dimensionality reduction techniques

Today: classification and regression

- Classification methods:
 - naive Bayes
 - support vector machine (SVM)
 - □ k-nearest-neighbors (kNN)
- → Regression:
 - ☐ linear

Classification: example problems

	or Y model to get a state of the state of th	
class labels		
data instance		

		Last V county by low of county of the county	
class labels	"cerebellum", "anterior_commisure"		
data instance			

		Land to consider the first and	
class labels	"cerebellum", "anterior_commisure"		
data instance	$<(x_1,y_1,z_1), \dots (x_t,y_t,z_t)>$		

		our Y manuty by and y manufacture of the state of the sta	
class labels	"cerebellum", "anterior_commisure"	"chair", "celery"	
data instance	$(x_1,y_1,z_1), \dots (x_t,y_t,z_t)>$		

		one is considered to the constant of the cons	
class labels	"cerebellum", "anterior_commisure"	"chair", "celery"	
data instance	$<(x_1,y_1,z_1), \dots (x_t,y_t,z_t)>$	<v<sub>1,v₂,,v_n></v<sub>	

		our Y manuth by and the state of the state o	
class labels	"cerebellum", "anterior_commisure"	"chair", "celery"	" " " " " " " " " " " " " " " " " " "
data instance	$(x_1,y_1,z_1), \dots (x_t,y_t,z_t)>$	<v<sub>1,v₂,,v_n></v<sub>	

		our Y manuth by and the state of the state o	
class labels	"cerebellum", "anterior_commisure"	"chair", "celery"	" " " " " " " " " " " " " " " " " " "
data instance	$(x_1,y_1,z_1), \dots (x_t,y_t,z_t)>$	<v<sub>1,v₂,,v_n></v<sub>	<n<sub>1,n₂,,n_n></n<sub>

		are to control for the control	
class labels	"cerebellum", "anterior_commisure"	"chair", "celery"	
data instance	$<(x_1,y_1,z_1), \dots (x_t,y_t,z_t)>$	<v<sub>1,v₂,,v_n></v<sub>	<n<sub>1,n₂,,n_n></n<sub>

- ☐ Input: feature vector for each data instance
- Output: class label

Classifiers divide in roughly 3 types

- Generative
 - Build a generative statistical model
 - Naive Bayes
- Discriminative
 - Directly estimate a decision rule or boundary
 - □ SVM
- Instance based classifiers
 - Use observations directly without building a model
 - □ kNN

How do most classifiers work? 3 main steps!

Assume: Make an assumption about the data

e.g. assume all values of voxels recorded during the presentation of the same word follow a Gaussian distribution

How do most classifiers work? 3 main steps!

Assume: Make an assumption about the data

e.g. assume all values of voxels recorded during the presentation of the same word follow a Gaussian distribution

Train: Use data to estimate (learn) the parameters of this model

e.g. estimate the mean and covariance of the Gaussian for each word

How do most classifiers work? 3 main steps!

Assume: Make an assumption about the data

 e.g. assume all values of voxels recorded during the presentation of the same word follow a Gaussian distribution

Train: Use data to estimate (learn) the parameters of this model

e.g. estimate the mean and covariance of the Gaussian for each word

Test: Apply learned model to new data

e.g. using the learned mean and covariance for each word class, calculate how likely it is for a new data instance to belong to each class

Problem with train step: too many parameters to estimate can lead to their inaccurate estimation

Let voxels have only 2 possible values: 0 and 1 Let us be interested in a region of interest with 30 voxels Let the person only read 2 words: "chair" and "celery"

V ₁	V ₂	 v ₂₉	v ₃₀	w
0	1	 1	0	"chair"
0	1	 1	1	"celery"
1	1	 0	1	"celery"

Parameter = P(w = "chair" |
$$v_1 = 0, v_2 = 1, ..., v_{29} = 1, v_{30} = 0$$
) =>

Problem with train step: too many parameters to estimate can lead to their inaccurate estimation

Let voxels have only 2 possible values: 0 and 1 Let us be interested in a region of interest with 30 voxels Let the person only read 2 words: "chair" and "celery"

v ₁	V ₂	 v ₂₉	v ₃₀	W
0	1	 1	0	"chair"
0	1	 1	1	"celery"
1	1	 0	1	"celery"

- Parameter = P(w = "chair" | $v_1 = 0, v_2 = 1, ..., v_{20} = 1, v_{30} = 0$) => ~2³⁰ parameters
- Need more instances than parameters to estimate correctly => lots of data!

Reduce number of parameters using Bayes rule

$$\mathbb{P}(w|v_1, v_2, \dots v_{29}, v_{30}) = \frac{\mathbb{P}(v_1, v_2, \dots v_{29}, v_{30}|w)\mathbb{P}(w)}{\mathbb{P}(v_1, v_2, \dots v_{29}, v_{30})}$$

☐ How many parameters for $P(v_1, v_2, ..., v_{29}, v_{30} | w)$? ~2³⁰x2!

Reduce number of parameters using Bayes rule

$$\mathbb{P}(w|v_1, v_2, \dots v_{29}, v_{30}) = \frac{\mathbb{P}(v_1, v_2, \dots v_{29}, v_{30}|w)\mathbb{P}(w)}{\mathbb{P}(v_1, v_2, \dots v_{29}, v_{30})}$$

- How many parameters for $P(v_1, v_2, ..., v_{29}, v_{30} | w)$? ~2³⁰x2!
- Naive Bayes assumption: all features are independent given a class

$$\mathbb{P}(v_1, v_2, \dots v_{29}, v_{30}|w) = \prod_{i=1}^{30} \mathbb{P}(v_i|w)$$

Reduce number of parameters using Bayes rule

$$\mathbb{P}(w|v_1, v_2, \dots v_{29}, v_{30}) = \frac{\mathbb{P}(v_1, v_2, \dots v_{29}, v_{30}|w)\mathbb{P}(w)}{\mathbb{P}(v_1, v_2, \dots v_{29}, v_{30})}$$

- ☐ How many parameters for $P(v_1, v_2, ..., v_{29}, v_{30} | w)$? ~2³⁰x2!
- Naive Bayes assumption: all features are independent given a class

$$\mathbb{P}(v_1, v_2, \dots v_{29}, v_{30}|w) = \prod_{i=1}^{30} \mathbb{P}(v_i|w)$$

- Now, how many parameters for $P(v_1, v_2, ..., v_{29}, v_{30} | w)$? 2x30 = 60
- ☐ Huge reduction of parameters, but a very strong assumption

What about when features aren't discrete? Gaussian Naive Bayes

v ₁	v ₂	 v ₂₉	v ₃₀	W
0.22	0.80	 0.89	0.20	"chair"
0.14	0.31	 0.23	0.45	"celery"
0.53	0.67	 0.01	0.43	"celery"

Now infinite possibilities for $\langle v_1, v_2, ..., v_{29}, v_{30} \rangle$, not just 2^{30}

What about when features aren't discrete? Gaussian Naive Bayes

v ₁	v ₂	 v ₂₉	v ₃₀	W
0.22	0.80	 0.89	0.20	"chair"
0.14	0.31	 0.23	0.45	"celery"
0.53	0.67	 0.01	0.43	"celery"

- Now infinite possibilities for $\langle v_1, v_2, ... v_{29}, v_{30} \rangle$, not just 2^{30}
- ☐ Common approach: assume P(v_i|w) follows a normal (Gaussian) distribution
 - a Gaussian distribution is fully described by 2 parameters: its mean and variance

What about when features aren't discrete? Gaussian Naive Bayes

v ₁	v ₂	 v ₂₉	v ₃₀	W
0.22	0.80	 0.89	0.20	"chair"
0.14	0.31	 0.23	0.45	"celery"
0.53	0.67	 0.01	0.43	"celery"

- Now infinite possibilities for $\langle v_1, v_2, ... v_{29}, v_{30} \rangle$, not just 2^{30}
- ☐ Common approach: assume P(v_i|w) follows a normal (Gaussian) distribution
 - a Gaussian distribution is fully described by 2 parameters: its mean and variance

$$\mathbb{P}(v_i = 0.22 | w = chair) = \frac{1}{\sqrt{2\pi\sigma_{i,chair}^2}} e^{\frac{1}{2} \left(\frac{0.22 - \mu_{i,chair}}{\sigma_{i,chair}}\right)^2}$$

Gaussian Naive Bayes: estimation of parameters

$$\mathbb{P}(v_i = 0.22 | w = chair) = \frac{1}{\sqrt{2\pi\sigma_{i,chair}^2}} e^{\frac{1}{2}\left(\frac{0.22 - \mu_{i,chair}}{\sigma_{i,chair}}\right)^2}$$

- f u Want to estimate $\mu_{\rm i,chair}$, $\sigma_{\rm i,chair}$, $\mu_{\rm i,celery}$, $\sigma_{\rm i,celery}$ for all i
- $\mu_{1,chair}$ = average the values of v_1 during all presentations of "chair"
- $\sigma_{1,chair}$ = find standard deviation of the values of v_1 during all presentations of "chair"

Given new values of $\langle v_1, v_2, ..., v_{29}, v_{30} \rangle$, predict what word was shown to the subject

- Given new values of $\langle v_1, v_2, ..., v_{29}, v_{30} \rangle$, predict what word was shown to the subject
- Using the estimated $\mu_{\rm i,chair}$, $\sigma_{\rm i,chair}$, $\mu_{\rm i,celery}$, $\sigma_{\rm i,celery}$, calculate:

$$\mathbb{P}(v_i = NEW_i | w = chair) = \frac{1}{\sqrt{2\pi\sigma_{i,chair}^2}} e^{\frac{1}{2} \left(\frac{NEW_i - \mu_{i,chair}}{\sigma_{i,chair}}\right)^2}$$

- Given new values of $\langle v_1, v_2, ... v_{29}, v_{30} \rangle$, predict what word was shown to the subject
- Using the estimated $\mu_{\rm i,chair}$, $\sigma_{\rm i,chair}$, $\mu_{\rm i,celery}$, $\sigma_{\rm i,celery}$, calculate:

$$\mathbb{P}(v_i = NEW_i | w = chair) = \frac{1}{\sqrt{2\pi\sigma_{i,chair}^2}} e^{\frac{1}{2} \left(\frac{NEW_i - \mu_{i,chair}}{\sigma_{i,chair}}\right)^2}$$

☐ Then, using the Naive Bayes assumption and the Bayes theorem, calculate P (w = chair|V = NEW) and P(w = celery |V = NEW)

- Given new values of $\langle v_1, v_2, ..., v_{29}, v_{30} \rangle$, predict what word was shown to the subject
- Using the estimated $\mu_{\text{i,chair}}$, $\sigma_{\text{i,chair}}$, $\mu_{\text{i,celery}}$, $\sigma_{\text{i,celery}}$, calculate:

$$\mathbb{P}(v_i = NEW_i | w = chair) = \frac{1}{\sqrt{2\pi\sigma_{i,chair}^2}} e^{\frac{1}{2} \left(\frac{NEW_i - \mu_{i,chair}}{\sigma_{i,chair}}\right)^2}$$

- □ Then, using the Naive Bayes assumption and the Bayes theorem, calculate P (w = chair|V = NEW) and P(w = celery |V = NEW)
- → Assign the class with higher probability to the new data instance

Naive Bayes takeaways

- ☐ Reduced number of parameters to estimate
- Fast training
- ☐ Can be used to quickly classify very high-dimensional data instances
- But makes strong conditional independence assumption

Support Vector Machines (SVM): motivation

Want to directly learn a classification boundary, but which boundary is better?

SVM: choosing a decision boundary with the largest margin

What are support vectors?

- ☐ Data points that are a margin-width away from the decision boundary
- Only need to store the support vectors to predict labels for new points => efficiency

What if data isn't linearly separable? Allow error in classification => soft-margin SVM

☐ Trade-off between maximizing the margin and minimizing the number of mistakes on the training data

Can we do more? Represent features in higher dimension to encourage separability

☐ Represent the features in higher dimension => easier to separate

Can we do more? Represent features in higher dimension to encourage separability

- ☐ Represent the features in higher dimension => easier to separate
- Reformulate the original SVM problem to one that depends not on the features themselves, but on the dot product of the new representations of the features

Can we do more? Represent features in higher dimension to encourage separability

- ☐ Represent the features in higher dimension => easier to separate
- Reformulate the original SVM problem to one that depends not on the features themselves, but on the dot product of the new representations of the features
- This dot product is equal to a kernel function evaluated at the features
 - Benefit = don't have to store high-dimensional new representations of features, just need to have a way to evaluate the kernel function

Can we do more? Represent features in higher dimension to encourage separability

- Represent the features in higher dimension => easier to separate
- Reformulate the original SVM problem to one that depends not on the features themselves, but on the dot product of the new representations of the features
- This dot product is equal to a kernel function evaluated at the features

Benefit = don't have to store high-dimensional new representations of features. iust need to

have a way to evaluate the kernel function

One common kernel is the Gaussian kernel (RBF):

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$$

What if we have multiple classes? Multi-class SVM

Margin = gap between correct class and nearest other class

SVM takeaways

- Directly estimates the decision boundary
- Space-efficient
- □ Can handle non-linearly separable data through various kernel functions
- Does not directly output probabilities for classifications

k-Nearest Neighbors classifier: even fewer assumptions!

- Does not assume a model = non-parametric method
 - Number of parameters scale with the number of training data
 - ☐ Free from strong distributional assumptions that are not satisfied in practice
 - But needs lot of data to learn complex models

kNN: an intuitive algorithm

☐ We wish to classify a test instance

kNN: an intuitive algorithm

- We wish to classify a test instance
- ☐ Find the k closest training data instances to the test instance

kNN: an intuitive algorithm

- We wish to classify a test instance
- ☐ Find the k closest training data instances to the test instance
- ☐ Assign test instance with label of the majority within the k closest instances

How to choose k?

- ☐ Trade-off between stability and accuracy
 - ☐ Larger k is more stable
 - Smaller k is more accurate
- Depends on type and amount of training data

kNN in practice: classifying DTI fibers into bundles

kNN takeaways:

- Requires a lot of data
- ☐ Requires storage and computation on entire data set
- □ Powerful classification technique if enough data available, and if there are no problems with data storage

Classification vs regression

- ☐ Classification = output is class label ("chair", "celery")
 - classify the word a subject was reading from fMRI voxels

- Regression = output is continuous value (<0.2, 0.3, ..., 0.9>, <0.7, 0.3, ..., 0.1>)
 - predict next fMRI voxel values from previous voxel values

Regression: general

- \Box Choose a parametric form for P(labels|data; θ)
- \Box Derive a learning algorithm to estimate parameters θ

- \Box Let X = data, Y = labels, and W = regression weights
- \Box Choose linear model for P(Y|X): Y = W*X + errors

- \Box Let X = data, Y = labels, and W = regression weights
- \Box Choose linear model for P(Y|X): Y = W*X + errors
- \blacksquare Assume errors are normally distributed with 0 mean, and std σ
 - $P(Y|X) = N(W^*X, \sigma)$

- Let X = data, Y = labels, and W = regression weights
- \Box Choose linear model for P(Y|X): Y = W*X + errors
- lacktriangle Assume errors are normally distributed with 0 mean, and std σ
 - $P(Y|X) = N(W^*X, \sigma)$
- Want to learn W from training data

$$W = \underset{W}{\operatorname{argmax}} \prod_{m} P(y^{m}|x^{m}, W) = \underset{W}{\operatorname{argmax}} \sum_{m} ln P(y^{m}|x^{m}, W)$$

- Let X = data, Y = labels, and W = regression weights
- \Box Choose linear model for P(Y|X): Y = W*X + errors
- lacktriangle Assume errors are normally distributed with 0 mean, and std σ
- Want to learn W from training data

$$W = \underset{W}{\operatorname{argmax}} \prod_{m} P(y^{m}|x^{m}, W) = \underset{W}{\operatorname{argmax}} \sum_{m} \ln P(y^{m}|x^{m}, W)$$

Since: $p(y|x;W) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{y-f(x;W)}{\sigma})^2}$,

$$W = \underset{W}{\operatorname{argmax}} \sum_{m} -(y^{m} - f(x^{m}; W))^{2} = \underset{W}{\operatorname{argmin}} \sum_{m} (y^{m} - f(x^{m}; W))^{2}$$

- Let X = data, Y = labels, and W = regression weights
- \Box Choose linear model for P(Y|X): Y = W*X + errors
- lacktriangle Assume errors are normally distributed with 0 mean, and std σ
- Want to learn W from training data

$$W = \underset{W}{\operatorname{argmax}} \prod_{m} P(y^{m}|x^{m}, W) = \underset{W}{\operatorname{argmax}} \sum_{m} ln P(y^{m}|x^{m}, W)$$

Since: $p(y|x;W) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{y-f(x;W)}{\sigma})^2}$,

$$W = \underset{W}{\operatorname{argmax}} \sum_{m} -(y^{m} - f(x^{m}; W))^{2} = \underset{W}{\operatorname{argmin}} \sum_{m} (y^{m} - f(x^{m}; W))^{2}$$

To solve, take derivative and set equal to 0. Closed-form solution available for simple f(x), otherwise use gradient descent

66

- 3 types of classifiers
 - ☐ Generative (e.g. Naive Bayes)
 - Make strong assumptions about data
 - ☐ Faster and need less data to estimate parameters (though, these may be wrong)

- 3 types of classifiers
 - ☐ Generative (e.g. Naive Bayes)
 - Make strong assumptions about data
 - ☐ Faster and need less data to estimate parameters (though, these may be wrong)
 - ☐ Discriminative (e.g. SVM)
 - Need many data instances, especially when data is high-dimensional
 - More adaptive to the actual data (few assumptions)

- 3 types of classifiers
 - ☐ Generative (e.g. Naive Bayes)
 - Make strong assumptions about data
 - ☐ Faster and need less data to estimate parameters (though, these may be wrong)
 - ☐ Discriminative (e.g. SVM)
 - Need many data instances, especially when data is high-dimensional
 - More adaptive to the actual data (few assumptions)
 - ☐ Instance based classifiers (e.g. kNN)
 - ☐ Require storage and computation on entire data set
 - Non-parametric so very adaptive to data, and powerful when decision boundary is irregular

- 3 types of classifiers
 - ☐ Generative (e.g. Naive Bayes)
 - Make strong assumptions about data
 - ☐ Faster and need less data to estimate parameters (though, these may be wrong)
 - ☐ Discriminative (e.g. SVM)
 - Need many data instances, especially when data is high-dimensional
 - More adaptive to the actual data (few assumptions)
 - ☐ Instance based classifiers (e.g. kNN)
 - ☐ Require storage and computation on entire data set
 - Non-parametric so very adaptive to data, and powerful when decision boundary is irregular
- Regression can be used to predict continuous values

Next time: model selection & dimensionality reduction

☐ Deal with large number of sensors/recording sites

- investigate high-dimensional representations
 - classification (what does this high-dimensional data represent?)
 - regression (how does it represent it? can we predict a different representation?)
 - model selection (what model would best describe this high dimensional data?)
- uncover few underlying processes that interact in complex ways
 - dimensionality reduction techniques