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How can ML help neuroscientists?
❏ Deal with large number of sensors/recording sites

❏ investigate high-dimensional representations
❏ classification (what does this high-dimensional data represent?)
❏ regression (how does it represent it? can we predict a different representation?)
❏ model selection (what model would best describe this high dimensional data?)
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How can ML help neuroscientists?
❏ Evaluate results

❏ nearly assumption-free significance testing (are the results significantly different from 
chance?)
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Today: model selection and evaluation
❏ Model selection

❏ overfitting
❏ cross validation
❏ feature selection
❏ regularization

❏ Evaluation of results
❏ significance testing

❏ permutation test
❏ multiple comparison corrections
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Goal of most ML methods: generalize well to new data
❏ Recall 3 main steps for most classifiers: assume, train, test
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Goal of most ML methods: generalize well to new data
❏ Recall 3 main steps for most classifiers: assume, train, test
❏ Goal: train a model that is able to perform well on new test data = generalize 

from the training data to the test data 

❏ But multiple models are possible for the same data. How do we choose the 
best one?

❏ So we want to select models that do not underfit or overfit to the training data
❏ underfitting is generally easier to detect than overfitting because it performs poorly on the 

training set 10



Problem: overfitting to training data
❏ Overfitting occurs when errortrain < errortest
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Problem: overfitting to training data
❏ Overfitting occurs when errortrain < errortest
❏ Amount of overfitting = errortrain - errortest

❏ What happens when we test on the same data we trained? Is there 
overfitting?
❏ Demo -> split iris data set in half; train on half of the data, test on same half. Then, test on 

other half, compare accuracy

❏ Yes! But we just can’t evaluate how much overfitting there is if we test on the training set. 
Ignorance is not bliss.
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Why does overfitting happen?
❏ The test data isn’t the same as the training data
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Why does overfitting happen?
❏ The test data isn’t the same as the training data

❏ we evaluate performance on different data (test data) from the one we used to estimate 
parameters (training data)
❏ some overfitting is natural 

❏ Few training examples for certain parameters
❏ model learns to care about specific noise in those training examples, which is not 

generalizable to new data

❏ example: GNB, learning mus, sigmas from 2 repetitions -> overfit to noise vs learning 
from 12 repetitions

❏ the more complex a model is, the more likely it is to suffer from overfitting
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Ways to prevent overfitting
❏ Select the model that performs best on a third data set that is distinct from the 

training and testing data sets
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Cross-validation as a measure of generalizability

80%
10%

10%

Step 1: split data into a 
training and testing sets 

Step 2: run 1 cross-validation fold
❏ split original training data 

into a training and 
validation sets

❏ train on training data
❏ test on validation data
❏ record error
 

Step 3: repeat step 2 with a 
different split
 

Step 4: average errors from 
all cross-validation folds = 
cross-validation (CV)
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Cross-validation as a measure of generalizability 
❏ Perform cross-validation for each model that you are considering
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Cross-validation as a measure of generalizability 
❏ Perform cross-validation for each model that you are considering
❏ The model which has the lowest CV error generalizes the best
❏ Select this model for evaluation on the real test set
❏ Note that we never used the final test set in the model selection stage!
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❏ Train-test split is less important
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How to split the data?
❏ Train-test split is less important

❏ The more training data, the better; but still need enough data to evaluate the selected model 
❏ Generally, 80/20 or 90/10 splits are acceptable for train/test

❏ Many ways to divide the original training data into CV training set and a 
validation set
❏ exhaustive CV: all possible splits of train and validation

❏ Leave-p-out CV; LOOCV is a special case when p = 1
❏ non-exhaustive CV: not all possible splits

❏ k-fold-CV = randomly partition training data into k equal sized subsets; run k folds of CV 
in which each subset is used as validation exactly once
❏ k = 10 commonly used
❏ What happens when k is equal to number of samples in the training data? LOOCV!

❏ stratified k-fold-CV = split such that each fold has ~same proportions of classes
❏ demo! 51



Cross-validation takeaways
❏ CV can be used to select the most generalizable model
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Cross-validation takeaways
❏ CV can be used to select the most generalizable model
❏ There is a trade-off between speed and accuracy in splitting the training data 

into validation and CV training sets
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Ways to prevent overfitting
❏ Select the model that performs best on a third data set that is distinct from the 

training and testing data sets
❏ called the “validation data set”
❏ trade off between size of training and validation data sets

❏ cross-validation

❏ Remove features that are irrelevant for a classification task
❏ feature selection

❏ Explicitly penalize complex models because we know they are prone to 
overfitting
❏ regularization
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Feature selection as a way to reduce overfitting in 
complex models
❏ In high-dimensional data, the number of features (e.g. voxels, sensors, etc.) is 

large, but there may only be a small number of features that are “relevant” to 
the learning task

55



Feature selection as a way to reduce overfitting in 
complex models
❏ In high-dimensional data, the number of features (e.g. voxels, sensors, etc.) is 

large, but there may only be a small number of features that are “relevant” to 
the learning task

❏ The learned model may overfit to the large number of irrelevant features 
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Feature selection as a way to reduce overfitting in 
complex models
❏ In high-dimensional data, the number of features (e.g. voxels, sensors, etc.) is 

large, but there may only be a small number of features that are “relevant” to 
the learning task

❏ The learned model may overfit to the large number of irrelevant features 
unless the training set is fairly large

❏ So we can remove some irrelevant features!
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Which features are irrelevant?
❏ Want to compute a score for each feature xi that tells us how informative this 

feature is about the class labels y
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feature is about the class labels y
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Which features are irrelevant?
❏ Want to compute a score for each feature xi that tells us how informative this 

feature is about the class labels y
❏ Mutual information can give us such a score

❏ Score each feature by its relative probability with respect to the class labels
❏ Example for binary x, y:

❏ What happens when xi and y are independent? P(xi,y) = P(xi)P(y) => MI(xi,y) = 0
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Feature selection takeaways
❏ Feature selection is a way to choose only those features that are relevant for 

a certain task
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Feature selection takeaways
❏ Feature selection is a way to choose only those features that are relevant for 

a certain task
❏ Mutual information is one way to select informative features
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Ways to prevent overfitting
❏ Select the model that performs best on a third data set that is distinct from the 

training and testing data sets
❏ called the “validation data set”
❏ trade off between size of training and validation data sets

❏ cross-validation

❏ Remove features that are irrelevant for a classification task
❏ feature selection

❏ Explicitly penalize complex models because we know they are prone to 
overfitting
❏ regularization
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What is regularization? Recall linear regression

where  Y = labels, X = data instances, and W = weights
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element of matrix W is a parameter, the model has many parameters to be 
estimated => complex model => prone to overfitting

❏ Solution: limit the complexity of the model by reducing the expressiveness of W
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❏ λ is a number that can vary between data sets => determine best value for λ through cross-
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❏ What happens if λ is negative?
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What is regularization? Recall linear regression

where  Y = labels, X = data instances, and W = weights

❏ Problem: when the data is very high-dimensional, W is large => since every 
element of matrix W is a parameter, the model has many parameters to be 
estimated => complex model => prone to overfitting

❏ Solution: limit the complexity of the model by reducing the expressiveness of W
❏ because we are looking for the W that minimizes a certain task, the addition of some function R 

of W directly penalizes any big elements of W

❏ λ is a number that can vary between data sets => determine best value for λ through cross-
validation

❏ What happens if λ is negative? Now, we’re not penalizing, but rewarding large elements of W => 
increasing overfitting
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What functions R of W are used for regularization?

❏ Two common ways to penalize complexity of W
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What functions R of W are used for regularization?

❏ Two common ways to penalize complexity of W
❏ require sum of squares of elements of W to be small => L2 penalty
❏ require sum of absolute values of the elements of W to be small => L1 penalty

❏ Demo!
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L1 vs L2 penalty in regression
❏ L1 penalty: 

❏ Pro: increased interpretability 

❏ only a few elements of W come out to be non-zero -> interpretable solution because we 

can easily tell which features (e.g. voxels) are related to which labels (e.g. some vector 
representation of “chair” or “celery”)

❏ Con: randomly chooses one of many correlated features to be non-zero

❏ problematic in the case that some of the correlated features are more important than 
others

❏ L2 penalty:
❏ Pro: no random choice of some correlated features over others
❏ Con: reduced interpretability because all features have weights
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Regularization takeaways
❏ Regularization directly penalizes the complexity of model parameters
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Regularization takeaways
❏ Regularization directly penalizes the complexity of model parameters
❏ There are several functions of the parameters that can be used for 

regularization
❏ The strength of the regularization (λ) can be determined through cross-

validation
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How can ML help neuroscientists?
❏ Evaluate results

❏ nearly assumption-free significance testing (are the results significantly different from 
chance?)
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Evaluating significance of results: 4 steps
❏ Formulate null hypothesis (e.g. results are due to chance) and the alternative 

hypothesis (e.g. results are due to a real effect)
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❏ commonly ᶓ = 0.01 or 0.05
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alternative
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ML offers a test statistic that does not make 
assumptions about the data distribution
❏ Formulate null hypothesis (e.g. results are due to chance) and the alternative 

hypothesis (e.g. results are due to a real effect)
❏ Choose a test statistic to evaluate whether the null hypothesis is true
❏ Compute a p-value

❏ P-value = given that the null hypothesis is true, what is the probability of observing a test 
statistic that is at least as significant as the one we observe

❏ Compare the computed p-value to some pre-determined significance ᶓ value 
❏ commonly ᶓ = 0.01 or 0.05

❏ if p-value ≤ ᶓ, then our results are significant and we reject the null hypothesis and accept the 
alternative
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Evaluating significance: example
❏ Experiment to determine whether places and faces have different 

representations in the brain
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Evaluating significance: example
❏ Experiment to determine whether places and faces have different 

representations in the brain
❏ Run a classifier, obtain 80% accuracy
❏ What is the null hypothesis? No difference between the representations
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Assumption-free test statistic: permutation test
❏ If the null hypothesis is true (there is no difference between the 

representations), it shouldn’t matter whether a data instance is recorded 
during a presentation of a face or a place 

100



Assumption-free test statistic: permutation test
❏ If the null hypothesis is true (there is no difference between the 

representations), it shouldn’t matter whether a data instance is recorded 
during a presentation of a face or a place 
❏ we should be able to produce ~80% accuracy with random assignment of labels (“face”, 
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Assumption-free test statistic: permutation test
❏ If the null hypothesis is true (there is no difference between the 

representations), it shouldn’t matter whether a data instance is recorded 
during a presentation of a face or a place 
❏ we should be able to produce ~80% accuracy with random assignment of labels (“face”, 

“place”) to our data instances

❏ Shuffle (permute) the order of the labels in the data set, while keeping the 
order of the data instances the same => recalculate results
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Permutation test steps
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Permutation test steps
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Step 1: permute labels order, 
keep data instance order

Step 2: run the same 
analysis as on the 
unpermuted data

45% classification accuracy

Step 3: save the computed 
classification accuracy

[45]

Step 4: repeat steps 
1 through 3 many 
times (100s to 1000s)



Permutation test steps
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Step 1: permute labels order, 
keep data instance order

Step 2: run the same 
analysis as on the 
unpermuted data

57% classification accuracy

Step 3: save the computed 
classification accuracy

[45, 57]

Step 4: repeat steps 
1 through 3 many 
times (100s to 1000s)



Permutation test steps
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Step 1: permute labels order, 
keep data instance order

Step 2: run the same 
analysis as on the 
unpermuted data

53% classification accuracy

Step 3: save the computed 
classification accuracy

[45, 57,...,53]

Step 4: repeat steps 
1 through 3 many 
times (100s to 1000s)



Getting a p-value from the permutation test
❏ At the end we have an array of all classification accuracies from permuted 

data: [45, 57,...,53]
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80%
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Getting a p-value from the permutation test
❏ At the end we have an array of all classification accuracies from permuted 

data: [45, 57,...,53]
❏ Calculate how many total times the obtained accuracy is greater or equal to 

80%
❏ The proportion of these better-performing runs out of all permuted runs is the 

p-value
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Getting a p-value from the permutation test
❏ At the end we have an array of all classification accuracies from permuted 

data: [45, 57,...,53]
❏ Calculate how many total times the obtained accuracy is greater or equal to 

80%
❏ The proportion of these better-performing runs out of all permuted runs is the 

p-value

112

unpermuted 
classification 
accuracy

❏ the unpermuted accuracy is 80%
❏ let us run 500 permutations
❏ 5 permutations above 80%
❏ p-value = 5/500 = 0.01



How many permutations should we run?
❏ What do you think? 100s or 1000s and why?
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How many permutations should we run?
❏ What do you think? 100s or 1000s and why?
❏ Trade-off between resolution and computation time
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Permutation test takeaways
❏ Makes no assumptions about the distribution of the data
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Permutation test takeaways
❏ Makes no assumptions about the distribution of the data
❏ Requires permuting the order of labels
❏ Computationally expensive because need to run the same analysis many 

times on the different permutations of the data
❏ but computation can be parallelized!
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Evaluating significance when testing multiple 
different models
❏ Examples 

❏ want to see how the representations of faces changes over time so we test a different 
predictor for one of many time windows
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Evaluating significance when testing multiple 
different models
❏ Examples 

❏ want to see how the representations of faces changes over time so we test a different 
predictor for one of many time windows

❏ want to see how the representations of faces changes over brain regions so we test a different 
predictor for one of many regions of interest

❏ We can find the corresponding p-value for each of the models using a 
permutation test

❏ But if we’re using ᶓ = 0.05, there is a 5% chance of incorrectly rejecting the 
null hypothesis, so what happens when we test multiple hypotheses?
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Problem with multiple comparisons: example
❏ Let there be 100 null hypothesis (e.g. ROI 1 does not represent faces,..., ROI 

100 does not represent face). 

123



Problem with multiple comparisons: example
❏ Let there be 100 null hypothesis (e.g. ROI 1 does not represent faces,..., ROI 

100 does not represent face). 
❏ We perform 100 independent permutation tests to test whether each null 

hypothesis is true.

124



Problem with multiple comparisons: example
❏ Let there be 100 null hypothesis (e.g. ROI 1 does not represent faces,..., ROI 

100 does not represent face). 
❏ We perform 100 independent permutation tests to test whether each null 

hypothesis is true.
❏ What is the probability that if all null hypotheses are true, there will be at least 

one incorrect rejection? 

125



Problem with multiple comparisons: example
❏ Let there be 100 null hypothesis (e.g. ROI 1 does not represent faces,..., ROI 

100 does not represent face). 
❏ We perform 100 independent permutation tests to test whether each null 

hypothesis is true.
❏ What is the probability that if all null hypotheses are true, there will be at least 

one incorrect rejection? 
❏ 1 - probability of no incorrect rejections

126



Problem with multiple comparisons: example
❏ Let there be 100 null hypothesis (e.g. ROI 1 does not represent faces,..., ROI 

100 does not represent face). 
❏ We perform 100 independent permutation tests to test whether each null 

hypothesis is true.
❏ What is the probability that if all null hypotheses are true, there will be at least 

one incorrect rejection? 
❏ 1 - probability of no incorrect rejections
❏ What is the probability that one hypothesis is correctly rejected? 1 - 0.05 = 0.95

127



Problem with multiple comparisons: example
❏ Let there be 100 null hypothesis (e.g. ROI 1 does not represent faces,..., ROI 

100 does not represent face). 
❏ We perform 100 independent permutation tests to test whether each null 

hypothesis is true.
❏ What is the probability that if all null hypotheses are true, there will be at least 

one incorrect rejection? 
❏ 1 - probability of no incorrect rejections
❏ What is the probability that one hypothesis is correctly rejected? 1 - 0.05 = 0.95
❏ So what is the probability that 100 hypotheses are correctly rejected? 0.95100

128



Problem with multiple comparisons: example
❏ Let there be 100 null hypothesis (e.g. ROI 1 does not represent faces,..., ROI 

100 does not represent face). 
❏ We perform 100 independent permutation tests to test whether each null 

hypothesis is true.
❏ What is the probability that if all null hypotheses are true, there will be at least 

one incorrect rejection? 
❏ 1 - probability of no incorrect rejections
❏ What is the probability that one hypothesis is correctly rejected? 1 - 0.05 = 0.95
❏ So what is the probability that 100 hypotheses are correctly rejected? 0.95100

❏ 1 - 0.95100 ≅ 0.994
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Solution: multiple comparisons correction
❏ Goal: come up with a way to threshold individual p-values to control 

probability of having false positives after all tests
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Solution: multiple comparisons correction
❏ Goal: come up with a way to threshold individual p-values to control 

probability of having false positives after all tests
❏ Bonferroni correction

❏ keeps the probability of having at least one false positive after all tests under ᶓ 
❏ for m p-values, threshold pi ≤ 
❏ very conservative when there is large number of tests m, not necessarily good

❏ FDR (False discovery rate) correction
❏ control the expected proportion of incorrect rejections of the null (false discoveries/positives)
❏ less stringent than Bonferroni, but greater power (i.e. P(reject null when alternate is true))
❏ many different variants

❏ Benjamini-Hochberg procedure: 
❏ sort p-values in increasing order, find largest k such that pk ≤     k
❏ reject null hypothesis for all tests i = 1,..k
❏ first test equivalent to Bonferroni correction, others slightly less stringent 140



Multiple comparison corrections takeaways
❏ Often, we must test multiple hypotheses and produce multiple p-values

141



Multiple comparison corrections takeaways
❏ Often, we must test multiple hypotheses and produce multiple p-values
❏ Thresholding each p-value independently at ᶓ, results in much greater false 

positive rate over all tests

142



Multiple comparison corrections takeaways
❏ Often, we must test multiple hypotheses and produce multiple p-values
❏ Thresholding each p-value independently at ᶓ, results in much greater false 

positive rate over all tests
❏ Multiple comparison corrections aim to establish thresholds for individual p-

values such that the overall false positive rate is controlled 

143



Multiple comparison corrections takeaways
❏ Often, we must test multiple hypotheses and produce multiple p-values
❏ Thresholding each p-value independently at ᶓ, results in much greater false 

positive rate over all tests
❏ Multiple comparison corrections aim to establish thresholds for individual p-

values such that the overall false positive rate is controlled 
❏ The most common multiple comparison correction is FDR, and there are 

many types of FDR procedures
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Main takeaways: model selection & significance 
testing
❏ Multiple models exist, but want to choose the simplest model (prevent 

overfitting) that learns well (prevent underfitting)

145



Main takeaways: model selection & significance 
testing
❏ Multiple models exist, but want to choose the simplest model (prevent 

overfitting) that learns well (prevent underfitting)
❏ Cross-validation, feature selection, and regularization can all be used 

individually or in groups to perform model selection

146



Main takeaways: model selection & significance 
testing
❏ Multiple models exist, but want to choose the simplest model (prevent 

overfitting) that learns well (prevent underfitting)
❏ Cross-validation, feature selection, and regularization can all be used 

individually or in groups to perform model selection
❏ Permutation test is one significance test that does not make assumptions 

about the data distribution

147



Main takeaways: model selection & significance 
testing
❏ Multiple models exist, but want to choose the simplest model (prevent 

overfitting) that learns well (prevent underfitting)
❏ Cross-validation, feature selection, and regularization can all be used 

individually or in groups to perform model selection
❏ Permutation test is one significance test that does not make assumptions 

about the data distribution
❏ When we wish to evaluate several hypotheses, we must correct for the 

multiple comparison in order to control the rate of incorrectly rejecting the null 
hypothesis
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Next time: dimensionality reduction & clustering
❏ Deal with large number of sensors/recording sites

❏ investigate high-dimensional representations
❏ classification (what does this high-dimensional data represent?)
❏ regression (how does it represent it? can we predict a different representation?)
❏ model selection (what model would best describe this high dimensional data?)

❏ uncover few underlying processes that interact in complex ways
❏ dimensionality reduction techniques 149


