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How can ML help neuroscientists?
❏ Deal with large number of sensors/recording sites

❏ investigate high-dimensional representations
❏ classification (what does this high-dimensional data represent?)
❏ regression (how does it represent it? can we predict a different representation?)
❏ model selection (what model would best describe this high dimensional data?)
❏ clustering (which high-dimensional representations are similar to each other?)

❏ uncover few underlying processes that interact in complex ways
❏ dimensionality reduction techniques
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Supervised vs unsupervised learning
❏ So far we’ve only looked at supervised learning methods

❏ Supervised methods require labels for each training data instance
❏ classification 
❏ regression

❏ Example: kNN classifier for DTI fibers assignments to anatomical bundles

❏ But what if we have a lot of unlabeled data and acquiring labels is expensive, 
or not even possible?

❏ Unsupervised learning! We’ll discuss two such methods today
❏ dimensionality reduction
❏ clustering

❏ expensive labels: DTI fibers assignments to 
anatomical bundles

❏ unknown labels: “brain states” assignments 
of resting state fMRI
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Today: dimensionality reduction & clustering
❏ Dimensionality reduction techniques
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❏ Independent component analysis (ICA)
❏ Canonical correlation analysis (CCA)
❏ Laplacian eigenmaps
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Dimensionality of the relevant information is often 
lower than dimensionality of the data
❏ Data dimension: high

❏ 100s of fMRI voxels in an ROI
❏ 100s of sensors or sources in MEG recordings
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Dimensionality of the relevant information is often 
lower than dimensionality of the data
❏ Data dimension: high

❏ 100s of fMRI voxels in an ROI
❏ 100s of sensors or sources in MEG recordings

❏ Relevant information dimension: low
❏ Redundant features can add more noise than signal

❏ Dimension of relevant information depends on the number of free parameters describing the 
probability densities
❏ For supervised methods, want to learn P(labels|data)
❏ For unsupervised methods, want to learn P(data)
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variance of the data
❏ Want to combine highly correlated or dependent features and focus on 

uncorrelated or independent features
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Goal: construct features that better account for the 
variance of the data
❏ Want to combine highly correlated or dependent features and focus on 

uncorrelated or independent features
❏ We’ve seen one way to do this already -- what is it?

❏ Feature selection
❏ Directly removes subsets of the observed features

❏ We’ve seen this in the context of a supervised task -- wanting to maximize the mutual 
information between selected features and labels

❏ What is the alternative in unsupervised tasks?
❏ Non trivial

❏ Latent features extraction (usually what people have in mind when they say dimensionality 
reduction)

❏ Some linear or nonlinear combination of observed features provides more efficient 
representation for the data than observed features
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Example: how does the brain store these pictures?
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Data: 64x64 dimensions, but are there fewer 
underlying relevant dimensions?
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We can condense data to 3 underlying informative 
dimensions
❏ Don’t need every pixel (64x64)
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We can condense data to 3 underlying informative 
dimensions
❏ Don’t need every pixel (64x64)
❏ We want to extract perceptually meaningful 

structure
❏ Up-down pose
❏ Left-right pose
❏ Lighting direction

❏ Reduction of high-dimensional inputs to 3-
dimensional intrinsic manifold
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How do we find latent dimensions in the observed 
data?
❏ What kind of manifold does our observed data lie on?

❏ Linear
❏ Principal component analysis (PCA)
❏ Independent component analysis (ICA)
❏ Canonical correlation analysis (CCA)

❏ Nonlinear 
❏ Laplacian eigenmaps
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Principal component analysis (PCA) identifies axes 
of latent low-dimensional linear subspace of features
❏ Assumption: observed D-dimensional data lies on or near a low d-

dimensional linear subspace
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Principal component analysis (PCA) identifies axes 
of latent low-dimensional linear subspace of features
❏ Assumption: observed D-dimensional data lies on or near a low d-

dimensional linear subspace

❏ Axes of this subspace are an effective representation of the data
❏ What does an “effective” representation mean?

❏ Able to distinguish data instances that are truly different 

❏ Goal: identify these axes = also known as the principal components (PCs) 47



PCA: algorithm intuition
❏ PCs are the axes of the subspace so they’re orthogonal to each other
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❏ PCs are the axes of the subspace so they’re orthogonal to each other
❏ Intuitively, PCs are the orthogonal directions that capture most of the variance 

in the data
❏ ordered so that 1st PC is direction of greatest variability in data, and so on
❏ projection of data points along 1st PC discriminate the data most along any direction

❏ let data instance xi be a 2-dimensional vector
❏ let 1st PC be vector v
❏ projection of xi onto v is vTxi 

❏ 2nd PC = next orthogonal direction of greatest variability
❏ Remove all variability in first direction, then find next PC

❏ Once the PCs are computed, we can reduce dimensionality of data
❏ Original D-dimensional data instance xi = <xi

1, …, xi
D>

❏ Reduced d-dimensional transformations: transformed xi  = <v1
Txi,...,vd

Txi > 56



PCA: low rank matrix factorization for compression

57

data PCs



How do we know how many PCs we need?
❏ Plot how much variance in the data is explained by each PC 
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How do we know how many PCs we need?
❏ Plot how much variance in the data is explained by each PC 
❏ Because PCs are ordered (1st PC explains the most variance), we can do a 

cumulative plot of variance explained
❏ Cut off when certain % of variance explained is reached or when you see a sharp decrease in 

% variance explained
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PCA takeaways
❏ PCA is a linear dimensionality reduction technique

❏ Limited to linear projects of data

❏ Exact solution (non-iterative)
❏ No local optima
❏ No tuning parameters
❏ Note that PCA assumes that data is centered (mean is subtracted) 
❏ PCs are orthogonal
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Do we need the latent dimensions to be orthogonal?

68

❏ What if instead, they’re statistically independent? => Independent component 
analysis (ICA)



ICA aims to separate the observed data into some 
underlying signals that have been mixed 

69
mixed observationsunderlying sources of signal



Similarities between PCA and ICA
❏ Both are linear methods (perform linear transformations)
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PCA: low rank matrix factorization for compression 

ICA: full rank matrix factorization to remove dependencies among rows 



Differences between PCA and ICA
❏ PCA does compression (fewer latent dimensions than observed dimensions)
❏ ICA does not do compression (same number of features)
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Differences between PCA and ICA
❏ PCA does compression (fewer latent dimensions than observed dimensions)
❏ ICA does not do compression (same number of features)

❏ PCA just removes correlations and not higher order dependence
❏ ICA removes correlations, and higher order dependence

❏ In PCA, some components are more important than others
❏ In ICA, all components are equally important

❏ In PCA, components are orthogonal
❏ In ICA, components are not orthogonal but statistically independent
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ICA takeaways
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underlying sources that have been mixed
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ICA takeaways
❏ ICA is a linear method that aims to separate the observed signal into 

underlying sources that have been mixed
❏ Unlike  PCA, which finds orthogonal latent components, ICA finds 

components that are statistically independent
❏ Used for denoising and source localization in neuroimaging
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What if we’re interested in explaining variance in 
multiple data sets at the same time?
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What if we’re interested in explaining variance in 
multiple data sets at the same time?

❏ Example: simultaneous recordings of NIRS (data set A) and fMRI (data set 
B), can we find the common brain processes?

❏ Canonical correlation analysis (CCA)  maximizes the correlation of the 
projected data A and data B in the common latent lower-dimensional space
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CCA: example use in neuroscience = discovering 
shared semantic basis between people
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CCA: example use in neuroscience = discovering 
shared semantic basis between people

❏ In an fMRI, we present words to subjects, one at a time
❏ We aim to use the fMRI data, along with its corresponding word label to train 

a general model that can predict brain activity for an arbitrary word (even a 
word that was never presented to the subject) 86



Let’s consider semantics within one person first

87Mitchell et al., Science 2008



Semantic features for 2 presented words 

88



Training the model: learn a regression between 
semantic vectors and fMRI data for all words in 
training set
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Applying the model: for any given word, look up 
semantic vector, then apply learned regression 
weights to generate corresponding fMRI image
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How do we evaluate how well we can predict fMRI 
images for arbitrary words?
❏ We don’t have fMRI images for any arbitrary word, so there is no ground truth 

for evaluation
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How do we evaluate how well we can predict fMRI 
images for arbitrary words?
❏ We don’t have fMRI images for any arbitrary word, so there is no ground truth 

for evaluation
❏ Do leave-2-out cross validation

❏ Train on 58 of 60 words and their corresponding fMRI images we have recorded
❏ Apply model on the remaining 2 test words to predict 2 fMRI images

❏ Test model by showing it the 2 true fMRI images corresponding to the held out words and 
asking it to guess which image corresponds to which word

❏ 1770 test pairs (60 words choose 2)
❏ Random guessing -> 0.50 accuracy
❏ Accuracy above 0.61 is significant (p<0.05, permutation test)
❏ Mean accuracy over 9 subjects is 0.79
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How do we evaluate how well we can predict fMRI 
images for arbitrary words?
❏ We don’t have fMRI images for any arbitrary word, so there is no ground truth 

for evaluation
❏ Do leave-2-out cross validation

❏ Train on 58 of 60 words and their corresponding fMRI images we have recorded
❏ Apply model on the remaining 2 test words to predict 2 fMRI images

❏ Test model by showing it the 2 true fMRI images corresponding to the held out words and 
asking it to guess which image corresponds to which word

❏ 1770 test pairs (60 words choose 2)
❏ Random guessing -> 0.50 accuracy
❏ Accuracy above 0.61 is significant (p<0.05, permutation test)
❏ Mean accuracy over 9 subjects is 0.79

❏ We can predict the fMRI activation corresponding to a word the model has 
never seen before
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CCA: extending the model to multiple subjects and 
experiments improves accuracy to 87% (by 8%)
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CCA takeaways
❏ CCA learns linear transformations of multiple data sets, such that these 

transformations are maximally correlated
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CCA takeaways
❏ CCA learns linear transformations of multiple data sets, such that these 

transformations are maximally correlated
❏ In neuroscience, it can be used to extend models to multiple subjects or 

experiments
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Beyond linear transformation: laplacian eigenmaps
❏ Linear methods find lower-dimensional linear projects that preserves 

distances between all points
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Laplacian eigenmaps: 3 main steps
❏ Construct graph
❏ Compute graph Laplacian 
❏ Embed points using graph Laplacian
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Step 1: constructing a similarity graph 
❏ Similarity graphs model local neighborhood relations between data points
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Step 1: constructing a similarity graph 
❏ Similarity graphs model local neighborhood relations between data points
❏ Graph fully described by vertices, edges, and weights

❏ G(V,E,W)
❏ V = vertices = all data points
❏ E = edges

❏ 2 ways to construct edges
❏ put edge between 2 data points if they are within ε distance of each other
❏ put edge between 2 data points if one is a k-NN of another

❏ can lead to 3 types of graphs:
❏ directed: edge A->B if A is k-NN of B
❏ symmetric: edge A-B if A is k-NN of B OR B is k-NN of A
❏ mutual: edge A-B if A is k-NN of B AND B is k-NN of A
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Step 1: constructing a similarity graph 
❏ Similarity graphs model local neighborhood relations between data points
❏ Graph fully described by vertices, edges, and weights

❏ G(V,E,W)
❏ V = vertices = all data points
❏ E = edges

❏ 2 ways to construct edges
❏ W = weights
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Step 1: constructing a similarity graph 
❏ Similarity graphs model local neighborhood relations between data points
❏ Graph fully described by vertices, edges, and weights

❏ G(V,E,W)
❏ V = vertices = all data points
❏ E = edges

❏ 2 ways to construct edges
❏ W = weights

❏ 2 ways to make weights:
❏ Wij= 1 if edge between nodes i and j is present, 0 otherwise
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Step 1: constructing a similarity graph 
❏ Similarity graphs model local neighborhood relations between data points
❏ Graph fully described by vertices, edges, and weights

❏ G(V,E,W)
❏ V = vertices = all data points
❏ E = edges

❏ 2 ways to construct edges
❏ W = weights

❏ 2 ways to make weights:
❏ Wij= 1 if edge between nodes i and j is present, 0 otherwise

❏ Wij=                 , Gaussian kernel similarity function (aka heat kernel)      
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How do we choose k, ε?

❏ The goal is to preserve local information so we don’t want to choose 
neighborhood sizes that are too large
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How do we choose k, ε?

❏ The goal is to preserve local information so we don’t want to choose 
neighborhood sizes that are too large

❏ Mostly dependent on the data, but want to avoid “shortcuts” that connect 
different arms of the swiss roll
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Step 2: compute the graph Laplacian of the 
constructed graph
❏ Graph Laplacian = D - W
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Step 2: compute the graph Laplacian of the 
constructed graph
❏ Graph Laplacian = D - W
❏ W = weight matrix from the constructed graph

❏ For n data points, W is size n x n
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Step 2: compute the graph Laplacian of the 
constructed graph
❏ Graph Laplacian = D - W
❏ W = weight matrix from the constructed graph

❏ For n data points, W is size n x n

❏ D = degree matrix = diag(d1,...,dn)
❏ di = degree of vertex i = sum of all weights that connect to vertex i
❏ For n data points, D is size n x n
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Step 3: embed data points using graph Laplacian 

❏ Intuition = find vector f such that, if xi is close to xj in the graph (i.e. Wij is 
large), then the projections f(i) and f(j) are also close

129



Step 3: embed data points using graph Laplacian 

❏ Intuition = find vector f such that, if xi is close to xj in the graph (i.e. Wij is 
large), then the projections f(i) and f(j) are also close

❏ Find eigenvectors of graph Laplacian and corresponding eigenvalues

❏

130



Step 3: embed data points using graph Laplacian 

❏ Intuition = find vector f such that, if xi is close to xj in the graph (i.e. Wij is 
large), then the projections f(i) and f(j) are also close

❏ Find eigenvectors of graph Laplacian and corresponding eigenvalues
❏ To embed data points in d-dimensional space, we project data into 

eigenvectors associated with the d smallest eigenvalues

❏
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Unrolling the swiss roll with Laplacian eigenmaps
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Laplacian eigenmaps takeaways
❏ A way to do nonlinear dimensionality reduction
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Laplacian eigenmaps takeaways
❏ A way to do nonlinear dimensionality reduction
❏ Aim to preserve local information
❏ Require 3 main steps:

❏ Construct a similarity graph between data points
❏ Compute the graph Laplacian
❏ Use graph Laplacian to embed data points
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Supervised vs unsupervised learning
❏ So far we’ve only looked at supervised learning methods

❏ Supervised methods require labels for each training data instance
❏ classification 
❏ regression

❏ Example: kNN classifier for DTI fibers assignments to anatomical bundles

❏ But what if we have a lot of unlabeled data and acquiring labels is expensive, 
or not even possible?

❏ Unsupervised learning! We’ll discuss two such methods today
❏ dimensionality reduction
❏ clustering

❏ expensive labels: DTI fibers assignments to 
anatomical bundles

❏ unknown labels: “brain states” assignments 
of resting state fMRI
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Clustering: motivation
❏ We talked about using kNN to classify individual DTI fibers into anatomical 

bundles
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Clustering: motivation
❏ We talked about using kNN to classify individual DTI fibers into anatomical 

bundles
❏ However, this still requires some human effort to label the training fibers with 

corresponding anatomical bundles
❏ error-prone
❏ effortful

❏ Can we free the human?
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What is clustering?
❏ Organizing data into groups, or 

clusters, such that there is:
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What is clustering?
❏ Organizing data into groups, or 

clusters, such that there is:
❏ High similarity within groups
❏ Low similarity between groups

❏ Unsupervised, so no labels to 
rely on for clustering 
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How to measure “similarity” between/within clusters?
❏ Any function that takes two data points as input and produces a real number 

as output
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How to measure “similarity” between/within clusters?
❏ Any function that takes two data points as input and produces a real number 

as output
❏ Examples:

❏ Euclidean distance (as a measure of dissimilarity):

❏ Correlation coefficient:  
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Clustering algorithms divide into 2 main types
❏ Partitional algorithms

❏ Construct various partitions and then evaluate the partitions by some criterion
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Clustering algorithms divide into 2 main types
❏ Partitional algorithms

❏ Construct various partitions and then evaluate the partitions by some criterion

❏ Hierarchical algorithms
❏ Create a hierarchical decomposition of the set of objects using some criterion
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Partitional clustering
❏ Each data instance is placed in exactly one of K non-overlapping clusters
❏ The user must specify the number of clusters K
❏ We’ll discuss 2 such algorithms:

❏ k-means
❏ spectral clustering
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K-means algorithm: 4 easy steps!
❏ Input desired number of clusters k
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K-means algorithm: 4 easy steps!
❏ Input desired number of clusters k
❏ Initialize the k cluster centers (randomly if necessary)
❏ Iterate:

❏ Assign all data instances to the nearest cluster center
❏ Re-estimate the k cluster centers (aka cluster mean) based on current assignments

❏ Terminate if none of the assignments changed in the last iteration
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Step 1 + 2: input number of clusters k, initialize their 
positions 

158



Step 3.1: assign all data to nearest cluster
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Step 3.2: re-estimate k cluster means
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Step 3.2: re-estimate k cluster means
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Step 3.1 again: assign all data to nearest cluster
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Step 3.2: re-estimate k cluster means
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Step 4: terminate when cluster assignments don’t 
change
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K-means problems: sensitive to cluster initialization
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K-means problems: sensitive to cluster initialization
❏ Very important to try multiple starting points for the initialization of cluster 

means
❏ Consider using k-means++ initialization

❏ initializes cluster means to be generally distant from each other
❏ provably better results than random initialization
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K-means problems: choosing k
❏ Objective function:
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174



K-means problems: choosing k
❏ Objective function:

❏ In practice, look for “knee”/”elbow” in objective function:

❏ Can we choose k by minimizing the objective over k? No! The objective will 
go to 0 as the number of clusters approaches the number of centers!
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K-means problems: shape of clusters
❏ Assumes convex clusters
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K-means takeaways
❏ A simple, iterative way to do clustering
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K-means takeaways
❏ A simple, iterative way to do clustering
❏ Sensitive to initialization of cluster means
❏ Assumes convexity of clusters

179



What if clusters aren’t convex?
❏ We can first do laplacian eigenmaps to reduce 

dimensionality
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What if clusters aren’t convex?
❏ We can first do laplacian eigenmaps to reduce 

dimensionality
❏ Then we can do k-means on the embedded 

points in lower-dimension
❏ This is called spectral clustering

182



Spectral clustering: intuition
❏ Laplacian eigenmaps constructs a graph. If there are separable clusters, the 

corresponding graph should have disconnected subgraphs

183



Spectral clustering: intuition
❏ Laplacian eigenmaps constructs a graph. If there are separable clusters, the 

corresponding graph should have disconnected subgraphs
❏ Points are easy to cluster in the embedded space using k-means
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Spectral clustering problems
❏ Same problems as laplacian eigenmaps (choice of k for k-NN, or ε)
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Spectral clustering problems
❏ Same problems as laplacian eigenmaps (choice of k for k-NN, or ε)
❏ Also need a way to choose number of clusters k

❏ Most stable clustering is usually given by the value of k that maximizes the eigengap between 
consecutive eigenvalues
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Spectral clustering vs k-means
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Spectral clustering vs k-means
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Spectral clustering takeaways
❏ Another type of partitional clustering
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Spectral clustering takeaways
❏ Another type of partitional clustering
❏ Can deal with non-convex clusters
❏ First performs laplacian eigenmaps, and then clusters the embedded points 

using k-means 
❏ Still need to choose the number of clusters k
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Clustering algorithms divide into 2 main types
❏ Partitional algorithms

❏ Construct various partitions and then evaluate the partitions by some criterion

❏ Hierarchical algorithms
❏ Create a hierarchical decomposition of the set of objects using some criterion
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Hierarchical clustering: 2 types
❏ Divisive (top-down)
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❏ Agglomerative (bottom-up)
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Divisive hierarchical clustering (top-down)
❏ Step 1: start with all data in one cluster
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Divisive hierarchical clustering (top-down)
❏ Step 1: start with all data in one cluster
❏ Step 2: split cluster using a partitional clustering method
❏ Step 3: apply step 2 to every individual cluster until every data instance is in 

its own cluster

❏ Benefits from global information
❏ Can be efficient if:

❏ Stopped early (not wait until all points are in own clusters)
❏ Use an efficient partitional method (like k-means)
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Agglomerative clustering (bottom-up)
❏ Step 1: start with each item in own cluster
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Agglomerative clustering (bottom-up)
❏ Step 1: start with each item in own cluster
❏ Step 2: find best pair to merge into a new cluster
❏ Step 3: repeat step 2 until all clusters are fused together

206start here



But how do we find the best data points to merge?
❏ Start with a distance matrix that contains the distances between every pair of 

data instances
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Step 2: find the best pair to merge in a cluster
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How do we compute distances between clusters?
❏ Distance between two closest members in each class

❏ “single link”
❏ potentially long and skinny clusters

❏ Distance between two farthest members
❏ “complete link”
❏ tight clusters

❏ Average distance of all pairs
❏ “average link”
❏ robust against noise
❏ most widely used

217



Step 2: find the best pair to merge in a cluster
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Step 2: find the best pair to merge in a cluster

219

Now what? How do we compute distances between clusters 
with multiple data instances? => use complete link!
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Hierarchical clustering takeaways
❏ Creates a hierarchical decomposition of groups of objects
❏ There are two types: top-down and bottom-up
❏ Neither is very efficient
❏ But we don’t have to specify number of clusters apriori

227



Clustering takeaways
❏ Can be useful when there is a lot of unlabeled data
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Clustering takeaways
❏ Can be useful when there is a lot of unlabeled data
❏ Evaluation of clustering algorithms is subjective because there is no ground 

truth (since there are no labels)
❏ It’s very important to understand the assumptions that each clustering 

algorithm makes when you use it
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Main takeaways: dimensionality reduction and 
clustering
❏ Both are unsupervised methods that can be used when no labeled data is 

available
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Main takeaways: dimensionality reduction and 
clustering
❏ Both are unsupervised methods that can be used when no labeled data is 

available
❏ Dimensionality reduction can uncover underlying or latent dimensions of the 

observed data that can better explain the variance of the data
❏ Clustering can group different data instances without much domain 

knowledge
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Next time: advanced topics!
❏ Evaluate results

❏ cross validation (how generalizable are our results?)
❏ nearly assumption-free significance testing (are the results different from chance?)

❏ Complex data-driven hypotheses of brain processing
❏ advanced topics: latent variable models, reinforcement learning, deep learning
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