
Homework 2 Questions

Dimensionality reduction
and clustering

06/17/2016
Mariya Toneva
mariya@cmu.edu Some figures derived from slides

by Alona Fyshe, Aarti Singh,
Barnabás Póczos, Tom Mitchell

How can ML help neuroscientists?
❏ Deal with large number of sensors/recording sites

❏ investigate high-dimensional representations
❏ classification (what does this high-dimensional data represent?)
❏ regression (how does it represent it? can we predict a different representation?)
❏ model selection (what model would best describe this high dimensional data?)
❏ clustering (which high-dimensional representations are similar to each other?)

❏ uncover few underlying processes that interact in complex ways
❏ dimensionality reduction techniques

5

Supervised vs unsupervised learning
❏ So far we’ve only looked at supervised learning methods

6

Supervised vs unsupervised learning
❏ So far we’ve only looked at supervised learning methods

❏ Supervised methods require labels for each training data instance
❏ classification
❏ regression

7

Supervised vs unsupervised learning
❏ So far we’ve only looked at supervised learning methods

❏ Supervised methods require labels for each training data instance
❏ classification
❏ regression

❏ Example: kNN classifier for DTI fibers assignments to anatomical bundles

8

Supervised vs unsupervised learning
❏ So far we’ve only looked at supervised learning methods

❏ Supervised methods require labels for each training data instance
❏ classification
❏ regression

❏ Example: kNN classifier for DTI fibers assignments to anatomical bundles

❏ But what if we have a lot of unlabeled data and acquiring labels is expensive,
or not even possible?

9

Supervised vs unsupervised learning
❏ So far we’ve only looked at supervised learning methods

❏ Supervised methods require labels for each training data instance
❏ classification
❏ regression

❏ Example: kNN classifier for DTI fibers assignments to anatomical bundles

❏ But what if we have a lot of unlabeled data and acquiring labels is expensive,
or not even possible?

❏ expensive labels: DTI fibers assignments to
anatomical bundles

10

Supervised vs unsupervised learning
❏ So far we’ve only looked at supervised learning methods

❏ Supervised methods require labels for each training data instance
❏ classification
❏ regression

❏ Example: kNN classifier for DTI fibers assignments to anatomical bundles

❏ But what if we have a lot of unlabeled data and acquiring labels is expensive,
or not even possible?

❏ expensive labels: DTI fibers assignments to
anatomical bundles

❏ unknown labels: “brain states” assignments
of resting state fMRI

11

Supervised vs unsupervised learning
❏ So far we’ve only looked at supervised learning methods

❏ Supervised methods require labels for each training data instance
❏ classification
❏ regression

❏ Example: kNN classifier for DTI fibers assignments to anatomical bundles

❏ But what if we have a lot of unlabeled data and acquiring labels is expensive,
or not even possible?

❏ Unsupervised learning! We’ll discuss two such methods today

❏ expensive labels: DTI fibers assignments to
anatomical bundles

❏ unknown labels: “brain states” assignments
of resting state fMRI

12

Supervised vs unsupervised learning
❏ So far we’ve only looked at supervised learning methods

❏ Supervised methods require labels for each training data instance
❏ classification
❏ regression

❏ Example: kNN classifier for DTI fibers assignments to anatomical bundles

❏ But what if we have a lot of unlabeled data and acquiring labels is expensive,
or not even possible?

❏ Unsupervised learning! We’ll discuss two such methods today
❏ dimensionality reduction
❏ clustering

❏ expensive labels: DTI fibers assignments to
anatomical bundles

❏ unknown labels: “brain states” assignments
of resting state fMRI

13

Today: dimensionality reduction & clustering
❏ Dimensionality reduction techniques

❏ Principal component analysis (PCA)
❏ Independent component analysis (ICA)
❏ Canonical correlation analysis (CCA)
❏ Laplacian eigenmaps

14

Today: dimensionality reduction & clustering
❏ Dimensionality reduction techniques

❏ Principal component analysis (PCA)
❏ Independent component analysis (ICA)
❏ Canonical correlation analysis (CCA)
❏ Laplacian eigenmaps

❏ Clustering
❏ Partitional algorithms

❏ K-means
❏ Spectral clustering

❏ Hierarchical algorithms
❏ Divisive
❏ Agglomerative

15

Today: dimensionality reduction & clustering
❏ Dimensionality reduction techniques

❏ Principal component analysis (PCA)
❏ Independent component analysis (ICA)
❏ Canonical correlation analysis (CCA)
❏ Laplacian eigenmaps

❏ Clustering
❏ Partitional algorithms

❏ K-means
❏ Spectral clustering

❏ Hierarchical algorithms
❏ Divisive
❏ Agglomerative

16

Dimensionality of the relevant information is often
lower than dimensionality of the data
❏ Data dimension: high

❏ 100s of fMRI voxels in an ROI
❏ 100s of sensors or sources in MEG recordings

17

Dimensionality of the relevant information is often
lower than dimensionality of the data
❏ Data dimension: high

❏ 100s of fMRI voxels in an ROI
❏ 100s of sensors or sources in MEG recordings

❏ Relevant information dimension: low

18

Dimensionality of the relevant information is often
lower than dimensionality of the data
❏ Data dimension: high

❏ 100s of fMRI voxels in an ROI
❏ 100s of sensors or sources in MEG recordings

❏ Relevant information dimension: low
❏ Redundant features can add more noise than signal

19

Dimensionality of the relevant information is often
lower than dimensionality of the data
❏ Data dimension: high

❏ 100s of fMRI voxels in an ROI
❏ 100s of sensors or sources in MEG recordings

❏ Relevant information dimension: low
❏ Redundant features can add more noise than signal

❏ Dimension of relevant information depends on the number of free parameters describing the
probability densities

20

Dimensionality of the relevant information is often
lower than dimensionality of the data
❏ Data dimension: high

❏ 100s of fMRI voxels in an ROI
❏ 100s of sensors or sources in MEG recordings

❏ Relevant information dimension: low
❏ Redundant features can add more noise than signal

❏ Dimension of relevant information depends on the number of free parameters describing the
probability densities
❏ For supervised methods, want to learn P(labels|data)

21

Dimensionality of the relevant information is often
lower than dimensionality of the data
❏ Data dimension: high

❏ 100s of fMRI voxels in an ROI
❏ 100s of sensors or sources in MEG recordings

❏ Relevant information dimension: low
❏ Redundant features can add more noise than signal

❏ Dimension of relevant information depends on the number of free parameters describing the
probability densities
❏ For supervised methods, want to learn P(labels|data)
❏ For unsupervised methods, want to learn P(data)

22

Goal: construct features that better account for the
variance of the data
❏ Want to combine highly correlated or dependent features and focus on

uncorrelated or independent features

23

Goal: construct features that better account for the
variance of the data
❏ Want to combine highly correlated or dependent features and focus on

uncorrelated or independent features
❏ We’ve seen one way to do this already -- what is it?

24

Goal: construct features that better account for the
variance of the data
❏ Want to combine highly correlated or dependent features and focus on

uncorrelated or independent features
❏ We’ve seen one way to do this already -- what is it?

❏ Feature selection

25

Goal: construct features that better account for the
variance of the data
❏ Want to combine highly correlated or dependent features and focus on

uncorrelated or independent features
❏ We’ve seen one way to do this already -- what is it?

❏ Feature selection
❏ Directly removes subsets of the observed features

26

Goal: construct features that better account for the
variance of the data
❏ Want to combine highly correlated or dependent features and focus on

uncorrelated or independent features
❏ We’ve seen one way to do this already -- what is it?

❏ Feature selection
❏ Directly removes subsets of the observed features

❏ We’ve seen this in the context of a supervised task -- wanting to maximize the mutual
information between selected features and labels

27

Goal: construct features that better account for the
variance of the data
❏ Want to combine highly correlated or dependent features and focus on

uncorrelated or independent features
❏ We’ve seen one way to do this already -- what is it?

❏ Feature selection
❏ Directly removes subsets of the observed features

❏ We’ve seen this in the context of a supervised task -- wanting to maximize the mutual
information between selected features and labels

❏ What is the alternative in unsupervised tasks?

28

Goal: construct features that better account for the
variance of the data
❏ Want to combine highly correlated or dependent features and focus on

uncorrelated or independent features
❏ We’ve seen one way to do this already -- what is it?

❏ Feature selection
❏ Directly removes subsets of the observed features

❏ We’ve seen this in the context of a supervised task -- wanting to maximize the mutual
information between selected features and labels

❏ What is the alternative in unsupervised tasks?
❏ Non trivial

29

Goal: construct features that better account for the
variance of the data
❏ Want to combine highly correlated or dependent features and focus on

uncorrelated or independent features
❏ We’ve seen one way to do this already -- what is it?

❏ Feature selection
❏ Directly removes subsets of the observed features

❏ We’ve seen this in the context of a supervised task -- wanting to maximize the mutual
information between selected features and labels

❏ What is the alternative in unsupervised tasks?
❏ Non trivial

❏ Latent features extraction (usually what people have in mind when they say dimensionality
reduction)

30

Goal: construct features that better account for the
variance of the data
❏ Want to combine highly correlated or dependent features and focus on

uncorrelated or independent features
❏ We’ve seen one way to do this already -- what is it?

❏ Feature selection
❏ Directly removes subsets of the observed features

❏ We’ve seen this in the context of a supervised task -- wanting to maximize the mutual
information between selected features and labels

❏ What is the alternative in unsupervised tasks?
❏ Non trivial

❏ Latent features extraction (usually what people have in mind when they say dimensionality
reduction)

❏ Some linear or nonlinear combination of observed features provides more efficient
representation for the data than observed features

31

Example: how does the brain store these pictures?

32

Data: 64x64 dimensions, but are there fewer
underlying relevant dimensions?

33

We can condense data to 3 underlying informative
dimensions
❏ Don’t need every pixel (64x64)

34

We can condense data to 3 underlying informative
dimensions
❏ Don’t need every pixel (64x64)
❏ We want to extract perceptually meaningful

structure

35

We can condense data to 3 underlying informative
dimensions
❏ Don’t need every pixel (64x64)
❏ We want to extract perceptually meaningful

structure
❏ Up-down pose
❏ Left-right pose
❏ Lighting direction

36

We can condense data to 3 underlying informative
dimensions
❏ Don’t need every pixel (64x64)
❏ We want to extract perceptually meaningful

structure
❏ Up-down pose
❏ Left-right pose
❏ Lighting direction

❏ Reduction of high-dimensional inputs to 3-
dimensional intrinsic manifold

37

How do we find latent dimensions in the observed
data?
❏ What kind of manifold does our observed data lie on?

38

How do we find latent dimensions in the observed
data?
❏ What kind of manifold does our observed data lie on?

❏ Linear

39

How do we find latent dimensions in the observed
data?
❏ What kind of manifold does our observed data lie on?

❏ Linear
❏ Principal component analysis (PCA)
❏ Independent component analysis (ICA)
❏ Canonical correlation analysis (CCA)

40

How do we find latent dimensions in the observed
data?
❏ What kind of manifold does our observed data lie on?

❏ Linear
❏ Principal component analysis (PCA)
❏ Independent component analysis (ICA)
❏ Canonical correlation analysis (CCA)

❏ Nonlinear

41

How do we find latent dimensions in the observed
data?
❏ What kind of manifold does our observed data lie on?

❏ Linear
❏ Principal component analysis (PCA)
❏ Independent component analysis (ICA)
❏ Canonical correlation analysis (CCA)

❏ Nonlinear
❏ Laplacian eigenmaps

42

Principal component analysis (PCA) identifies axes
of latent low-dimensional linear subspace of features
❏ Assumption: observed D-dimensional data lies on or near a low d-

dimensional linear subspace

43

Principal component analysis (PCA) identifies axes
of latent low-dimensional linear subspace of features
❏ Assumption: observed D-dimensional data lies on or near a low d-

dimensional linear subspace

❏ Axes of this subspace are an effective representation of the data

44

Principal component analysis (PCA) identifies axes
of latent low-dimensional linear subspace of features
❏ Assumption: observed D-dimensional data lies on or near a low d-

dimensional linear subspace

❏ Axes of this subspace are an effective representation of the data
❏ What does an “effective” representation mean?

45

Principal component analysis (PCA) identifies axes
of latent low-dimensional linear subspace of features
❏ Assumption: observed D-dimensional data lies on or near a low d-

dimensional linear subspace

❏ Axes of this subspace are an effective representation of the data
❏ What does an “effective” representation mean?

❏ Able to distinguish data instances that are truly different
46

Principal component analysis (PCA) identifies axes
of latent low-dimensional linear subspace of features
❏ Assumption: observed D-dimensional data lies on or near a low d-

dimensional linear subspace

❏ Axes of this subspace are an effective representation of the data
❏ What does an “effective” representation mean?

❏ Able to distinguish data instances that are truly different

❏ Goal: identify these axes = also known as the principal components (PCs) 47

PCA: algorithm intuition
❏ PCs are the axes of the subspace so they’re orthogonal to each other

48

PCA: algorithm intuition
❏ PCs are the axes of the subspace so they’re orthogonal to each other
❏ Intuitively, PCs are the orthogonal directions that capture most of the variance

in the data

49

PCA: algorithm intuition
❏ PCs are the axes of the subspace so they’re orthogonal to each other
❏ Intuitively, PCs are the orthogonal directions that capture most of the variance

in the data
❏ ordered so that 1st PC is direction of greatest variability in data, and so on

50

PCA: algorithm intuition
❏ PCs are the axes of the subspace so they’re orthogonal to each other
❏ Intuitively, PCs are the orthogonal directions that capture most of the variance

in the data
❏ ordered so that 1st PC is direction of greatest variability in data, and so on
❏ projection of data points along 1st PC discriminate the data most along any direction

❏ let data instance xi be a 2-dimensional vector
❏ let 1st PC be vector v
❏ projection of xi onto v is vTxi

51

PCA: algorithm intuition
❏ PCs are the axes of the subspace so they’re orthogonal to each other
❏ Intuitively, PCs are the orthogonal directions that capture most of the variance

in the data
❏ ordered so that 1st PC is direction of greatest variability in data, and so on
❏ projection of data points along 1st PC discriminate the data most along any direction

❏ let data instance xi be a 2-dimensional vector
❏ let 1st PC be vector v
❏ projection of xi onto v is vTxi

❏ 2nd PC = next orthogonal direction of greatest variability

52

PCA: algorithm intuition
❏ PCs are the axes of the subspace so they’re orthogonal to each other
❏ Intuitively, PCs are the orthogonal directions that capture most of the variance

in the data
❏ ordered so that 1st PC is direction of greatest variability in data, and so on
❏ projection of data points along 1st PC discriminate the data most along any direction

❏ let data instance xi be a 2-dimensional vector
❏ let 1st PC be vector v
❏ projection of xi onto v is vTxi

❏ 2nd PC = next orthogonal direction of greatest variability
❏ Remove all variability in first direction, then find next PC

53

PCA: algorithm intuition
❏ PCs are the axes of the subspace so they’re orthogonal to each other
❏ Intuitively, PCs are the orthogonal directions that capture most of the variance

in the data
❏ ordered so that 1st PC is direction of greatest variability in data, and so on
❏ projection of data points along 1st PC discriminate the data most along any direction

❏ let data instance xi be a 2-dimensional vector
❏ let 1st PC be vector v
❏ projection of xi onto v is vTxi

❏ 2nd PC = next orthogonal direction of greatest variability
❏ Remove all variability in first direction, then find next PC

❏ Once the PCs are computed, we can reduce dimensionality of data

54

PCA: algorithm intuition
❏ PCs are the axes of the subspace so they’re orthogonal to each other
❏ Intuitively, PCs are the orthogonal directions that capture most of the variance

in the data
❏ ordered so that 1st PC is direction of greatest variability in data, and so on
❏ projection of data points along 1st PC discriminate the data most along any direction

❏ let data instance xi be a 2-dimensional vector
❏ let 1st PC be vector v
❏ projection of xi onto v is vTxi

❏ 2nd PC = next orthogonal direction of greatest variability
❏ Remove all variability in first direction, then find next PC

❏ Once the PCs are computed, we can reduce dimensionality of data
❏ Original D-dimensional data instance xi = <xi

1, …, xi
D>

55

PCA: algorithm intuition
❏ PCs are the axes of the subspace so they’re orthogonal to each other
❏ Intuitively, PCs are the orthogonal directions that capture most of the variance

in the data
❏ ordered so that 1st PC is direction of greatest variability in data, and so on
❏ projection of data points along 1st PC discriminate the data most along any direction

❏ let data instance xi be a 2-dimensional vector
❏ let 1st PC be vector v
❏ projection of xi onto v is vTxi

❏ 2nd PC = next orthogonal direction of greatest variability
❏ Remove all variability in first direction, then find next PC

❏ Once the PCs are computed, we can reduce dimensionality of data
❏ Original D-dimensional data instance xi = <xi

1, …, xi
D>

❏ Reduced d-dimensional transformations: transformed xi = <v1
Txi,...,vd

Txi > 56

PCA: low rank matrix factorization for compression

57

data PCs

How do we know how many PCs we need?
❏ Plot how much variance in the data is explained by each PC

58

How do we know how many PCs we need?
❏ Plot how much variance in the data is explained by each PC
❏ Because PCs are ordered (1st PC explains the most variance), we can do a

cumulative plot of variance explained

59

How do we know how many PCs we need?
❏ Plot how much variance in the data is explained by each PC
❏ Because PCs are ordered (1st PC explains the most variance), we can do a

cumulative plot of variance explained
❏ Cut off when certain % of variance explained is reached or when you see a sharp decrease in

% variance explained

60

PCA takeaways
❏ PCA is a linear dimensionality reduction technique

❏ Limited to linear projections of data

61

PCA takeaways
❏ PCA is a linear dimensionality reduction technique

❏ Limited to linear projects of data

❏ Exact solution (non-iterative)

62

PCA takeaways
❏ PCA is a linear dimensionality reduction technique

❏ Limited to linear projects of data

❏ Exact solution (non-iterative)
❏ No local optima

63

PCA takeaways
❏ PCA is a linear dimensionality reduction technique

❏ Limited to linear projects of data

❏ Exact solution (non-iterative)
❏ No local optima
❏ No tuning parameters

64

PCA takeaways
❏ PCA is a linear dimensionality reduction technique

❏ Limited to linear projects of data

❏ Exact solution (non-iterative)
❏ No local optima
❏ No tuning parameters
❏ Note that PCA assumes that data is centered (mean is subtracted)

65

PCA takeaways
❏ PCA is a linear dimensionality reduction technique

❏ Limited to linear projects of data

❏ Exact solution (non-iterative)
❏ No local optima
❏ No tuning parameters
❏ Note that PCA assumes that data is centered (mean is subtracted)
❏ PCs are orthogonal

66

Do we need the latent dimensions to be orthogonal?

67

Do we need the latent dimensions to be orthogonal?

68

❏ What if instead, they’re statistically independent? => Independent component
analysis (ICA)

ICA aims to separate the observed data into some
underlying signals that have been mixed

69
mixed observationsunderlying sources of signal

Similarities between PCA and ICA
❏ Both are linear methods (perform linear transformations)

70

Similarities between PCA and ICA
❏ Both are linear methods (perform linear transformations)
❏ Both can be formulated as a matrix factorization problem

71

Similarities between PCA and ICA
❏ Both are linear methods (perform linear transformations)
❏ Both can be formulated as a matrix factorization problem

72

PCA: low rank matrix factorization for compression

Similarities between PCA and ICA
❏ Both are linear methods (perform linear transformations)
❏ Both can be formulated as a matrix factorization problem

73

PCA: low rank matrix factorization for compression

ICA: full rank matrix factorization to remove dependencies among rows

Differences between PCA and ICA
❏ PCA does compression (fewer latent dimensions than observed dimensions)
❏ ICA does not do compression (same number of features)

74

Differences between PCA and ICA
❏ PCA does compression (fewer latent dimensions than observed dimensions)
❏ ICA does not do compression (same number of features)

❏ PCA just removes correlations and not higher order dependence
❏ ICA removes correlations, and higher order dependence

75

Differences between PCA and ICA
❏ PCA does compression (fewer latent dimensions than observed dimensions)
❏ ICA does not do compression (same number of features)

❏ PCA just removes correlations and not higher order dependence
❏ ICA removes correlations, and higher order dependence

❏ In PCA, some components are more important than others
❏ In ICA, all components are equally important

76

Differences between PCA and ICA
❏ PCA does compression (fewer latent dimensions than observed dimensions)
❏ ICA does not do compression (same number of features)

❏ PCA just removes correlations and not higher order dependence
❏ ICA removes correlations, and higher order dependence

❏ In PCA, some components are more important than others
❏ In ICA, all components are equally important

❏ In PCA, components are orthogonal
❏ In ICA, components are not orthogonal but statistically independent

77

ICA takeaways
❏ ICA is a linear method that aims to separate the observed signal into

underlying sources that have been mixed

78

ICA takeaways
❏ ICA is a linear method that aims to separate the observed signal into

underlying sources that have been mixed
❏ Unlike PCA, which finds orthogonal latent components, ICA finds

components that are statistically independent

79

ICA takeaways
❏ ICA is a linear method that aims to separate the observed signal into

underlying sources that have been mixed
❏ Unlike PCA, which finds orthogonal latent components, ICA finds

components that are statistically independent
❏ Used for denoising and source localization in neuroimaging

80

What if we’re interested in explaining variance in
multiple data sets at the same time?

81

What if we’re interested in explaining variance in
multiple data sets at the same time?

❏ Example: simultaneous recordings of NIRS (data set A) and fMRI (data set
B), can we find the common brain processes?

82

What if we’re interested in explaining variance in
multiple data sets at the same time?

❏ Example: simultaneous recordings of NIRS (data set A) and fMRI (data set
B), can we find the common brain processes?

❏ Canonical correlation analysis (CCA) maximizes the correlation of the
projected data A and data B in the common latent lower-dimensional space

83

CCA: example use in neuroscience = discovering
shared semantic basis between people

84

CCA: example use in neuroscience = discovering
shared semantic basis between people

❏ In an fMRI, we present words to subjects, one at a time

85

CCA: example use in neuroscience = discovering
shared semantic basis between people

❏ In an fMRI, we present words to subjects, one at a time
❏ We aim to use the fMRI data, along with its corresponding word label to train

a general model that can predict brain activity for an arbitrary word (even a
word that was never presented to the subject) 86

Let’s consider semantics within one person first

87Mitchell et al., Science 2008

Semantic features for 2 presented words

88

Training the model: learn a regression between
semantic vectors and fMRI data for all words in
training set

89

Applying the model: for any given word, look up
semantic vector, then apply learned regression
weights to generate corresponding fMRI image

90

How do we evaluate how well we can predict fMRI
images for arbitrary words?
❏ We don’t have fMRI images for any arbitrary word, so there is no ground truth

for evaluation

91

How do we evaluate how well we can predict fMRI
images for arbitrary words?
❏ We don’t have fMRI images for any arbitrary word, so there is no ground truth

for evaluation
❏ Do leave-2-out cross validation

92

How do we evaluate how well we can predict fMRI
images for arbitrary words?
❏ We don’t have fMRI images for any arbitrary word, so there is no ground truth

for evaluation
❏ Do leave-2-out cross validation

❏ Train on 58 of 60 words and their corresponding fMRI images we have recorded

93

How do we evaluate how well we can predict fMRI
images for arbitrary words?
❏ We don’t have fMRI images for any arbitrary word, so there is no ground truth

for evaluation
❏ Do leave-2-out cross validation

❏ Train on 58 of 60 words and their corresponding fMRI images we have recorded
❏ Apply model on the remaining 2 test words to predict 2 fMRI images

94

How do we evaluate how well we can predict fMRI
images for arbitrary words?
❏ We don’t have fMRI images for any arbitrary word, so there is no ground truth

for evaluation
❏ Do leave-2-out cross validation

❏ Train on 58 of 60 words and their corresponding fMRI images we have recorded
❏ Apply model on the remaining 2 test words to predict 2 fMRI images

❏ Test model by showing it the 2 true fMRI images corresponding to the held out words and
asking it to guess which image corresponds to which word

95

How do we evaluate how well we can predict fMRI
images for arbitrary words?
❏ We don’t have fMRI images for any arbitrary word, so there is no ground truth

for evaluation
❏ Do leave-2-out cross validation

❏ Train on 58 of 60 words and their corresponding fMRI images we have recorded
❏ Apply model on the remaining 2 test words to predict 2 fMRI images

❏ Test model by showing it the 2 true fMRI images corresponding to the held out words and
asking it to guess which image corresponds to which word

❏ 1770 test pairs (60 words choose 2)

96

How do we evaluate how well we can predict fMRI
images for arbitrary words?
❏ We don’t have fMRI images for any arbitrary word, so there is no ground truth

for evaluation
❏ Do leave-2-out cross validation

❏ Train on 58 of 60 words and their corresponding fMRI images we have recorded
❏ Apply model on the remaining 2 test words to predict 2 fMRI images

❏ Test model by showing it the 2 true fMRI images corresponding to the held out words and
asking it to guess which image corresponds to which word

❏ 1770 test pairs (60 words choose 2)
❏ Random guessing -> ?

97

How do we evaluate how well we can predict fMRI
images for arbitrary words?
❏ We don’t have fMRI images for any arbitrary word, so there is no ground truth

for evaluation
❏ Do leave-2-out cross validation

❏ Train on 58 of 60 words and their corresponding fMRI images we have recorded
❏ Apply model on the remaining 2 test words to predict 2 fMRI images

❏ Test model by showing it the 2 true fMRI images corresponding to the held out words and
asking it to guess which image corresponds to which word

❏ 1770 test pairs (60 words choose 2)
❏ Random guessing -> 0.50 accuracy

98

How do we evaluate how well we can predict fMRI
images for arbitrary words?
❏ We don’t have fMRI images for any arbitrary word, so there is no ground truth

for evaluation
❏ Do leave-2-out cross validation

❏ Train on 58 of 60 words and their corresponding fMRI images we have recorded
❏ Apply model on the remaining 2 test words to predict 2 fMRI images

❏ Test model by showing it the 2 true fMRI images corresponding to the held out words and
asking it to guess which image corresponds to which word

❏ 1770 test pairs (60 words choose 2)
❏ Random guessing -> 0.50 accuracy
❏ Accuracy above 0.61 is significant (p<0.05, permutation test)

99

How do we evaluate how well we can predict fMRI
images for arbitrary words?
❏ We don’t have fMRI images for any arbitrary word, so there is no ground truth

for evaluation
❏ Do leave-2-out cross validation

❏ Train on 58 of 60 words and their corresponding fMRI images we have recorded
❏ Apply model on the remaining 2 test words to predict 2 fMRI images

❏ Test model by showing it the 2 true fMRI images corresponding to the held out words and
asking it to guess which image corresponds to which word

❏ 1770 test pairs (60 words choose 2)
❏ Random guessing -> 0.50 accuracy
❏ Accuracy above 0.61 is significant (p<0.05, permutation test)
❏ Mean accuracy over 9 subjects is 0.79

100

How do we evaluate how well we can predict fMRI
images for arbitrary words?
❏ We don’t have fMRI images for any arbitrary word, so there is no ground truth

for evaluation
❏ Do leave-2-out cross validation

❏ Train on 58 of 60 words and their corresponding fMRI images we have recorded
❏ Apply model on the remaining 2 test words to predict 2 fMRI images

❏ Test model by showing it the 2 true fMRI images corresponding to the held out words and
asking it to guess which image corresponds to which word

❏ 1770 test pairs (60 words choose 2)
❏ Random guessing -> 0.50 accuracy
❏ Accuracy above 0.61 is significant (p<0.05, permutation test)
❏ Mean accuracy over 9 subjects is 0.79

❏ We can predict the fMRI activation corresponding to a word the model has
never seen before

101

CCA: extending the model to multiple subjects and
experiments improves accuracy to 87% (by 8%)

102

CCA takeaways
❏ CCA learns linear transformations of multiple data sets, such that these

transformations are maximally correlated

103

CCA takeaways
❏ CCA learns linear transformations of multiple data sets, such that these

transformations are maximally correlated
❏ In neuroscience, it can be used to extend models to multiple subjects or

experiments

104

Beyond linear transformation: laplacian eigenmaps
❏ Linear methods find lower-dimensional linear projects that preserves

distances between all points

105

Beyond linear transformation: laplacian eigenmaps
❏ Linear methods find lower-dimensional linear projects that preserves

distances between all points
❏ Laplacian eigenmaps preserves local information only

106

Beyond linear transformation: laplacian eigenmaps
❏ Linear methods find lower-dimensional linear projects that preserves

distances between all points
❏ Laplacian eigenmaps preserves local information only

107

Laplacian eigenmaps: 3 main steps
❏ Construct graph

108

Laplacian eigenmaps: 3 main steps
❏ Construct graph
❏ Compute graph Laplacian

109

Laplacian eigenmaps: 3 main steps
❏ Construct graph
❏ Compute graph Laplacian
❏ Embed points using graph Laplacian

110

Step 1: constructing a similarity graph
❏ Similarity graphs model local neighborhood relations between data points

111

Step 1: constructing a similarity graph
❏ Similarity graphs model local neighborhood relations between data points
❏ Graph fully described by vertices, edges, and weights

❏ G(V,E,W)

112

Step 1: constructing a similarity graph
❏ Similarity graphs model local neighborhood relations between data points
❏ Graph fully described by vertices, edges, and weights

❏ G(V,E,W)
❏ V = vertices = all data points

113

Step 1: constructing a similarity graph
❏ Similarity graphs model local neighborhood relations between data points
❏ Graph fully described by vertices, edges, and weights

❏ G(V,E,W)
❏ V = vertices = all data points
❏ E = edges

❏ 2 ways to construct edges

114

Step 1: constructing a similarity graph
❏ Similarity graphs model local neighborhood relations between data points
❏ Graph fully described by vertices, edges, and weights

❏ G(V,E,W)
❏ V = vertices = all data points
❏ E = edges

❏ 2 ways to construct edges
❏ put edge between 2 data points if they are within ε distance of each other

115

Step 1: constructing a similarity graph
❏ Similarity graphs model local neighborhood relations between data points
❏ Graph fully described by vertices, edges, and weights

❏ G(V,E,W)
❏ V = vertices = all data points
❏ E = edges

❏ 2 ways to construct edges
❏ put edge between 2 data points if they are within ε distance of each other
❏ put edge between 2 data points if one is a k-NN of another

❏ can lead to 3 types of graphs:

116

Step 1: constructing a similarity graph
❏ Similarity graphs model local neighborhood relations between data points
❏ Graph fully described by vertices, edges, and weights

❏ G(V,E,W)
❏ V = vertices = all data points
❏ E = edges

❏ 2 ways to construct edges
❏ put edge between 2 data points if they are within ε distance of each other
❏ put edge between 2 data points if one is a k-NN of another

❏ can lead to 3 types of graphs:
❏ directed: edge A->B if A is k-NN of B

117

Step 1: constructing a similarity graph
❏ Similarity graphs model local neighborhood relations between data points
❏ Graph fully described by vertices, edges, and weights

❏ G(V,E,W)
❏ V = vertices = all data points
❏ E = edges

❏ 2 ways to construct edges
❏ put edge between 2 data points if they are within ε distance of each other
❏ put edge between 2 data points if one is a k-NN of another

❏ can lead to 3 types of graphs:
❏ directed: edge A->B if A is k-NN of B
❏ symmetric: edge A-B if A is k-NN of B OR B is k-NN of A

118

Step 1: constructing a similarity graph
❏ Similarity graphs model local neighborhood relations between data points
❏ Graph fully described by vertices, edges, and weights

❏ G(V,E,W)
❏ V = vertices = all data points
❏ E = edges

❏ 2 ways to construct edges
❏ put edge between 2 data points if they are within ε distance of each other
❏ put edge between 2 data points if one is a k-NN of another

❏ can lead to 3 types of graphs:
❏ directed: edge A->B if A is k-NN of B
❏ symmetric: edge A-B if A is k-NN of B OR B is k-NN of A
❏ mutual: edge A-B if A is k-NN of B AND B is k-NN of A

119

Step 1: constructing a similarity graph
❏ Similarity graphs model local neighborhood relations between data points
❏ Graph fully described by vertices, edges, and weights

❏ G(V,E,W)
❏ V = vertices = all data points
❏ E = edges

❏ 2 ways to construct edges
❏ W = weights

120

Step 1: constructing a similarity graph
❏ Similarity graphs model local neighborhood relations between data points
❏ Graph fully described by vertices, edges, and weights

❏ G(V,E,W)
❏ V = vertices = all data points
❏ E = edges

❏ 2 ways to construct edges
❏ W = weights

❏ 2 ways to make weights:

121

Step 1: constructing a similarity graph
❏ Similarity graphs model local neighborhood relations between data points
❏ Graph fully described by vertices, edges, and weights

❏ G(V,E,W)
❏ V = vertices = all data points
❏ E = edges

❏ 2 ways to construct edges
❏ W = weights

❏ 2 ways to make weights:
❏ Wij= 1 if edge between nodes i and j is present, 0 otherwise

122

Step 1: constructing a similarity graph
❏ Similarity graphs model local neighborhood relations between data points
❏ Graph fully described by vertices, edges, and weights

❏ G(V,E,W)
❏ V = vertices = all data points
❏ E = edges

❏ 2 ways to construct edges
❏ W = weights

❏ 2 ways to make weights:
❏ Wij= 1 if edge between nodes i and j is present, 0 otherwise

❏ Wij= , Gaussian kernel similarity function (aka heat kernel)

123

How do we choose k, ε?

❏ The goal is to preserve local information so we don’t want to choose
neighborhood sizes that are too large

124

How do we choose k, ε?

❏ The goal is to preserve local information so we don’t want to choose
neighborhood sizes that are too large

❏ Mostly dependent on the data, but want to avoid “shortcuts” that connect
different arms of the swiss roll

125

Step 2: compute the graph Laplacian of the
constructed graph
❏ Graph Laplacian = D - W

126

Step 2: compute the graph Laplacian of the
constructed graph
❏ Graph Laplacian = D - W
❏ W = weight matrix from the constructed graph

❏ For n data points, W is size n x n

127

Step 2: compute the graph Laplacian of the
constructed graph
❏ Graph Laplacian = D - W
❏ W = weight matrix from the constructed graph

❏ For n data points, W is size n x n

❏ D = degree matrix = diag(d1,...,dn)
❏ di = degree of vertex i = sum of all weights that connect to vertex i
❏ For n data points, D is size n x n

128

Step 3: embed data points using graph Laplacian

❏ Intuition = find vector f such that, if xi is close to xj in the graph (i.e. Wij is
large), then the projections f(i) and f(j) are also close

129

Step 3: embed data points using graph Laplacian

❏ Intuition = find vector f such that, if xi is close to xj in the graph (i.e. Wij is
large), then the projections f(i) and f(j) are also close

❏ Find eigenvectors of graph Laplacian and corresponding eigenvalues

❏

130

Step 3: embed data points using graph Laplacian

❏ Intuition = find vector f such that, if xi is close to xj in the graph (i.e. Wij is
large), then the projections f(i) and f(j) are also close

❏ Find eigenvectors of graph Laplacian and corresponding eigenvalues
❏ To embed data points in d-dimensional space, we project data into

eigenvectors associated with the d smallest eigenvalues

❏

131

Unrolling the swiss roll with Laplacian eigenmaps

132

Laplacian eigenmaps takeaways
❏ A way to do nonlinear dimensionality reduction

133

Laplacian eigenmaps takeaways
❏ A way to do nonlinear dimensionality reduction
❏ Aim to preserve local information

134

Laplacian eigenmaps takeaways
❏ A way to do nonlinear dimensionality reduction
❏ Aim to preserve local information
❏ Require 3 main steps:

❏ Construct a similarity graph between data points
❏ Compute the graph Laplacian
❏ Use graph Laplacian to embed data points

135

Supervised vs unsupervised learning
❏ So far we’ve only looked at supervised learning methods

❏ Supervised methods require labels for each training data instance
❏ classification
❏ regression

❏ Example: kNN classifier for DTI fibers assignments to anatomical bundles

❏ But what if we have a lot of unlabeled data and acquiring labels is expensive,
or not even possible?

❏ Unsupervised learning! We’ll discuss two such methods today
❏ dimensionality reduction
❏ clustering

❏ expensive labels: DTI fibers assignments to
anatomical bundles

❏ unknown labels: “brain states” assignments
of resting state fMRI

136

Clustering: motivation
❏ We talked about using kNN to classify individual DTI fibers into anatomical

bundles

137

Clustering: motivation
❏ We talked about using kNN to classify individual DTI fibers into anatomical

bundles
❏ However, this still requires some human effort to label the training fibers with

corresponding anatomical bundles

138

Clustering: motivation
❏ We talked about using kNN to classify individual DTI fibers into anatomical

bundles
❏ However, this still requires some human effort to label the training fibers with

corresponding anatomical bundles
❏ error-prone
❏ effortful

139

Clustering: motivation
❏ We talked about using kNN to classify individual DTI fibers into anatomical

bundles
❏ However, this still requires some human effort to label the training fibers with

corresponding anatomical bundles
❏ error-prone
❏ effortful

❏ Can we free the human?

140

What is clustering?
❏ Organizing data into groups, or

clusters, such that there is:

141

What is clustering?
❏ Organizing data into groups, or

clusters, such that there is:
❏ High similarity within groups

142

What is clustering?
❏ Organizing data into groups, or

clusters, such that there is:
❏ High similarity within groups
❏ Low similarity between groups

143

What is clustering?
❏ Organizing data into groups, or

clusters, such that there is:
❏ High similarity within groups
❏ Low similarity between groups

❏ Unsupervised, so no labels to
rely on for clustering

144

How to measure “similarity” between/within clusters?
❏ Any function that takes two data points as input and produces a real number

as output

145

How to measure “similarity” between/within clusters?
❏ Any function that takes two data points as input and produces a real number

as output
❏ Examples:

❏ Euclidean distance (as a measure of dissimilarity):

146

How to measure “similarity” between/within clusters?
❏ Any function that takes two data points as input and produces a real number

as output
❏ Examples:

❏ Euclidean distance (as a measure of dissimilarity):

❏ Correlation coefficient:

147

Clustering algorithms divide into 2 main types
❏ Partitional algorithms

❏ Construct various partitions and then evaluate the partitions by some criterion

148

Clustering algorithms divide into 2 main types
❏ Partitional algorithms

❏ Construct various partitions and then evaluate the partitions by some criterion

❏ Hierarchical algorithms
❏ Create a hierarchical decomposition of the set of objects using some criterion

149

Partitional clustering
❏ Each data instance is placed in exactly one of K non-overlapping clusters

150

Partitional clustering
❏ Each data instance is placed in exactly one of K non-overlapping clusters
❏ The user must specify the number of clusters K

151

Partitional clustering
❏ Each data instance is placed in exactly one of K non-overlapping clusters
❏ The user must specify the number of clusters K
❏ We’ll discuss 2 such algorithms:

❏ k-means
❏ spectral clustering

152

K-means algorithm: 4 easy steps!
❏ Input desired number of clusters k

153

K-means algorithm: 4 easy steps!
❏ Input desired number of clusters k
❏ Initialize the k cluster centers (randomly if necessary)

154

K-means algorithm: 4 easy steps!
❏ Input desired number of clusters k
❏ Initialize the k cluster centers (randomly if necessary)
❏ Iterate:

❏ Assign all data instances to the nearest cluster center

155

K-means algorithm: 4 easy steps!
❏ Input desired number of clusters k
❏ Initialize the k cluster centers (randomly if necessary)
❏ Iterate:

❏ Assign all data instances to the nearest cluster center
❏ Re-estimate the k cluster centers (aka cluster mean) based on current assignments

156

K-means algorithm: 4 easy steps!
❏ Input desired number of clusters k
❏ Initialize the k cluster centers (randomly if necessary)
❏ Iterate:

❏ Assign all data instances to the nearest cluster center
❏ Re-estimate the k cluster centers (aka cluster mean) based on current assignments

❏ Terminate if none of the assignments changed in the last iteration

157

Step 1 + 2: input number of clusters k, initialize their
positions

158

Step 3.1: assign all data to nearest cluster

159

Step 3.2: re-estimate k cluster means

160

Step 3.2: re-estimate k cluster means

161

Step 3.1 again: assign all data to nearest cluster

162

Step 3.2: re-estimate k cluster means

163

Step 4: terminate when cluster assignments don’t
change

164

K-means problems: sensitive to cluster initialization

165

K-means problems: sensitive to cluster initialization

166

K-means problems: sensitive to cluster initialization

167

K-means problems: sensitive to cluster initialization
❏ Very important to try multiple starting points for the initialization of cluster

means

168

K-means problems: sensitive to cluster initialization
❏ Very important to try multiple starting points for the initialization of cluster

means
❏ Consider using k-means++ initialization

169

K-means problems: sensitive to cluster initialization
❏ Very important to try multiple starting points for the initialization of cluster

means
❏ Consider using k-means++ initialization

❏ initializes cluster means to be generally distant from each other

170

K-means problems: sensitive to cluster initialization
❏ Very important to try multiple starting points for the initialization of cluster

means
❏ Consider using k-means++ initialization

❏ initializes cluster means to be generally distant from each other
❏ provably better results than random initialization

171

K-means problems: choosing k
❏ Objective function:

172

K-means problems: choosing k
❏ Objective function:

❏ In practice, look for “knee”/”elbow” in objective function:

173

K-means problems: choosing k
❏ Objective function:

❏ In practice, look for “knee”/”elbow” in objective function:

❏ Can we choose k by minimizing the objective over k?

174

K-means problems: choosing k
❏ Objective function:

❏ In practice, look for “knee”/”elbow” in objective function:

❏ Can we choose k by minimizing the objective over k? No! The objective will
go to 0 as the number of clusters approaches the number of centers!

175

K-means problems: shape of clusters
❏ Assumes convex clusters

176

K-means takeaways
❏ A simple, iterative way to do clustering

177

K-means takeaways
❏ A simple, iterative way to do clustering
❏ Sensitive to initialization of cluster means

178

K-means takeaways
❏ A simple, iterative way to do clustering
❏ Sensitive to initialization of cluster means
❏ Assumes convexity of clusters

179

What if clusters aren’t convex?
❏ We can first do laplacian eigenmaps to reduce

dimensionality

180

What if clusters aren’t convex?
❏ We can first do laplacian eigenmaps to reduce

dimensionality
❏ Then we can do k-means on the embedded

points in lower-dimension

181

What if clusters aren’t convex?
❏ We can first do laplacian eigenmaps to reduce

dimensionality
❏ Then we can do k-means on the embedded

points in lower-dimension
❏ This is called spectral clustering

182

Spectral clustering: intuition
❏ Laplacian eigenmaps constructs a graph. If there are separable clusters, the

corresponding graph should have disconnected subgraphs

183

Spectral clustering: intuition
❏ Laplacian eigenmaps constructs a graph. If there are separable clusters, the

corresponding graph should have disconnected subgraphs
❏ Points are easy to cluster in the embedded space using k-means

184

Spectral clustering problems
❏ Same problems as laplacian eigenmaps (choice of k for k-NN, or ε)

185

Spectral clustering problems
❏ Same problems as laplacian eigenmaps (choice of k for k-NN, or ε)
❏ Also need a way to choose number of clusters k

186

Spectral clustering problems
❏ Same problems as laplacian eigenmaps (choice of k for k-NN, or ε)
❏ Also need a way to choose number of clusters k

❏ Most stable clustering is usually given by the value of k that maximizes the eigengap between
consecutive eigenvalues

187

Spectral clustering vs k-means

188

Spectral clustering vs k-means

189

Spectral clustering takeaways
❏ Another type of partitional clustering

190

Spectral clustering takeaways
❏ Another type of partitional clustering
❏ Can deal with non-convex clusters

191

Spectral clustering takeaways
❏ Another type of partitional clustering
❏ Can deal with non-convex clusters
❏ First performs laplacian eigenmaps, and then clusters the embedded points

using k-means

192

Spectral clustering takeaways
❏ Another type of partitional clustering
❏ Can deal with non-convex clusters
❏ First performs laplacian eigenmaps, and then clusters the embedded points

using k-means
❏ Still need to choose the number of clusters k

193

Clustering algorithms divide into 2 main types
❏ Partitional algorithms

❏ Construct various partitions and then evaluate the partitions by some criterion

❏ Hierarchical algorithms
❏ Create a hierarchical decomposition of the set of objects using some criterion

194

Hierarchical clustering: 2 types
❏ Divisive (top-down)

195

start here

Hierarchical clustering: 2 types
❏ Divisive (top-down)

196

start here

❏ Agglomerative (bottom-up)

start here

Divisive hierarchical clustering (top-down)
❏ Step 1: start with all data in one cluster

197

start here

Divisive hierarchical clustering (top-down)
❏ Step 1: start with all data in one cluster
❏ Step 2: split cluster using a partitional clustering method

198

start here

Divisive hierarchical clustering (top-down)
❏ Step 1: start with all data in one cluster
❏ Step 2: split cluster using a partitional clustering method
❏ Step 3: apply step 2 to every individual cluster until every data instance is in

its own cluster

199

start here

Divisive hierarchical clustering (top-down)
❏ Step 1: start with all data in one cluster
❏ Step 2: split cluster using a partitional clustering method
❏ Step 3: apply step 2 to every individual cluster until every data instance is in

its own cluster

❏ Benefits from global information

200

start here

Divisive hierarchical clustering (top-down)
❏ Step 1: start with all data in one cluster
❏ Step 2: split cluster using a partitional clustering method
❏ Step 3: apply step 2 to every individual cluster until every data instance is in

its own cluster

❏ Benefits from global information
❏ Can be efficient if:

201

start here

Divisive hierarchical clustering (top-down)
❏ Step 1: start with all data in one cluster
❏ Step 2: split cluster using a partitional clustering method
❏ Step 3: apply step 2 to every individual cluster until every data instance is in

its own cluster

❏ Benefits from global information
❏ Can be efficient if:

❏ Stopped early (not wait until all points are in own clusters)

202

start here

Divisive hierarchical clustering (top-down)
❏ Step 1: start with all data in one cluster
❏ Step 2: split cluster using a partitional clustering method
❏ Step 3: apply step 2 to every individual cluster until every data instance is in

its own cluster

❏ Benefits from global information
❏ Can be efficient if:

❏ Stopped early (not wait until all points are in own clusters)
❏ Use an efficient partitional method (like k-means)

203

start here

Agglomerative clustering (bottom-up)
❏ Step 1: start with each item in own cluster

204start here

Agglomerative clustering (bottom-up)
❏ Step 1: start with each item in own cluster
❏ Step 2: find best pair to merge into a new cluster

205start here

Agglomerative clustering (bottom-up)
❏ Step 1: start with each item in own cluster
❏ Step 2: find best pair to merge into a new cluster
❏ Step 3: repeat step 2 until all clusters are fused together

206start here

But how do we find the best data points to merge?
❏ Start with a distance matrix that contains the distances between every pair of

data instances

207

Step 2: find the best pair to merge in a cluster

208

Step 2: find the best pair to merge in a cluster

209

Step 2: find the best pair to merge in a cluster

210

Now what? How do we compute distances between clusters
with multiple data instances?

How do we compute distances between clusters?
❏ Distance between two closest members in each class

❏ “single link”

211

How do we compute distances between clusters?
❏ Distance between two closest members in each class

❏ “single link”
❏ potentially long and skinny clusters

212

How do we compute distances between clusters?
❏ Distance between two closest members in each class

❏ “single link”
❏ potentially long and skinny clusters

❏ Distance between two farthest members
❏ “complete link”

213

How do we compute distances between clusters?
❏ Distance between two closest members in each class

❏ “single link”
❏ potentially long and skinny clusters

❏ Distance between two farthest members
❏ “complete link”
❏ tight clusters

214

How do we compute distances between clusters?
❏ Distance between two closest members in each class

❏ “single link”
❏ potentially long and skinny clusters

❏ Distance between two farthest members
❏ “complete link”
❏ tight clusters

❏ Average distance of all pairs
❏ “average link”

215

How do we compute distances between clusters?
❏ Distance between two closest members in each class

❏ “single link”
❏ potentially long and skinny clusters

❏ Distance between two farthest members
❏ “complete link”
❏ tight clusters

❏ Average distance of all pairs
❏ “average link”
❏ robust against noise

216

How do we compute distances between clusters?
❏ Distance between two closest members in each class

❏ “single link”
❏ potentially long and skinny clusters

❏ Distance between two farthest members
❏ “complete link”
❏ tight clusters

❏ Average distance of all pairs
❏ “average link”
❏ robust against noise
❏ most widely used

217

Step 2: find the best pair to merge in a cluster

218

Now what? How do we compute distances between clusters
with multiple data instances?

Step 2: find the best pair to merge in a cluster

219

Now what? How do we compute distances between clusters
with multiple data instances? => use complete link!

220

221

222

223

Hierarchical clustering takeaways
❏ Creates a hierarchical decomposition of groups of objects

224

Hierarchical clustering takeaways
❏ Creates a hierarchical decomposition of groups of objects
❏ There are two types: top-down and bottom-up

225

Hierarchical clustering takeaways
❏ Creates a hierarchical decomposition of groups of objects
❏ There are two types: top-down and bottom-up
❏ Neither is very efficient

226

Hierarchical clustering takeaways
❏ Creates a hierarchical decomposition of groups of objects
❏ There are two types: top-down and bottom-up
❏ Neither is very efficient
❏ But we don’t have to specify number of clusters apriori

227

Clustering takeaways
❏ Can be useful when there is a lot of unlabeled data

228

Clustering takeaways
❏ Can be useful when there is a lot of unlabeled data
❏ Evaluation of clustering algorithms is subjective because there is no ground

truth (since there are no labels)

229

Clustering takeaways
❏ Can be useful when there is a lot of unlabeled data
❏ Evaluation of clustering algorithms is subjective because there is no ground

truth (since there are no labels)
❏ It’s very important to understand the assumptions that each clustering

algorithm makes when you use it

230

Main takeaways: dimensionality reduction and
clustering
❏ Both are unsupervised methods that can be used when no labeled data is

available

231

Main takeaways: dimensionality reduction and
clustering
❏ Both are unsupervised methods that can be used when no labeled data is

available
❏ Dimensionality reduction can uncover underlying or latent dimensions of the

observed data that can better explain the variance of the data

232

Main takeaways: dimensionality reduction and
clustering
❏ Both are unsupervised methods that can be used when no labeled data is

available
❏ Dimensionality reduction can uncover underlying or latent dimensions of the

observed data that can better explain the variance of the data
❏ Clustering can group different data instances without much domain

knowledge

233

Next time: advanced topics!
❏ Evaluate results

❏ cross validation (how generalizable are our results?)
❏ nearly assumption-free significance testing (are the results different from chance?)

❏ Complex data-driven hypotheses of brain processing
❏ advanced topics: latent variable models, reinforcement learning, deep learning

234

