
Please pick up an anonymous 
evaluation sheet



Homework 3 Questions





Advanced topics: 
latent variable models, deep learning, 
and reinforcement learning

06/24/2016
Mariya Toneva
mariya@cmu.edu Some figures derived from slides 

by Tom Mitchell, Aarti Singh, 
Barnabás Póczos



How can ML help neuroscientists?
❏ Evaluate results

❏ cross validation (how generalizable are our results?)
❏ nearly assumption-free significance testing (are the results different from chance?)

❏ Complex data-driven hypotheses of brain processing
❏ advanced topics: latent variable models, reinforcement learning, deep learning

5



Look ahead to end of lecture: understanding the 
most recent AI feat of beating Go world champion

6Mnih et al., 2013 Silver et al., 2016 Nature 

http://www.youtube.com/watch?v=V1eYniJ0Rnk


Today: advanced topics!
❏ Latent variable models

❏ Hidden Markov models

❏ Reinforcement learning
❏ Deep learning

❏ Neural networks
❏ Recurrent NNs

❏ Long short-term memory networks
❏ Deep belief networks
❏ Convolutional neural networks

❏ AlphaGo: RL + deep learning!

7



❏ Moving from treating all observations as independent from each other, to 
dependent

Importance of sequential data

8



❏ Moving from treating all observations as independent from each other, to 
dependent

❏ Important, when considering sequential data, like we have in neuroscience:

Importance of sequential data

9



❏ Moving from treating all observations as independent from each other, to 
dependent

❏ Important, when considering sequential data, like we have in neuroscience:
❏ Example: observation 1 = fMRI voxel activities in ROI 1 for TR 1
❏                 observation 2 = fMRI voxel activities in ROI 1 for TR 2
❏                 …
❏                 observation N = fMRI voxel activities in ROI 1 for TR N

Importance of sequential data

10

o1 o2 on
...



❏ Moving from treating all observations as independent from each other, to 
dependent

❏ Important, when considering sequential data, like we have in neuroscience:
❏ Example: observation 1 = fMRI voxel activities in ROI 1 for TR 1
❏                 observation 2 = fMRI voxel activities in ROI 1 for TR 2
❏                 …
❏                 observation N = fMRI voxel activities in ROI 1 for TR N

Importance of sequential data

11

o1 o2 on
...observations for ROI 1

v1
v2
…
vm

voxel values 
for the m 
voxels in ROI 
1 during TR n

TR 1 TR 2 TR n



❏ Moving from treating all observations as independent from each other, to 
dependent

❏ Important, when considering sequential data, like we have in neuroscience:
❏ Example: observation 1 = fMRI voxel activities in ROI 1 for TR 1
❏                 observation 2 = fMRI voxel activities in ROI 1 for TR 2
❏                 …
❏                 observation N = fMRI voxel activities in ROI 1 for TR N

Importance of sequential data

12

o1 o2 on
...observations for ROI 1

v1
v2
…
vm

voxel values 
for the m 
voxels in ROI 
1 during TR n

TR 1 TR 2 TR n



What if there are latent processes?
❏ Dependence in observations may be due to dependence in latent states

13

  observations

TR 1 TR 2 TR n

v1
v2
…
vm

voxel values for 
the m voxels 
during TR n

o1 o2 on



What if there are latent processes?
❏ Dependence in observations may be due to dependence in latent states

❏ Example: 
❏ underlying processes while subject is at rest in an fMRI

14

latent states

  observations

 
...

TR 1 TR 2 TR n

v1
v2
…
vm

voxel values for 
the m voxels 
during TR n

o1 o2 on



What if there are latent processes?
❏ Dependence in observations may be due to dependence in latent states

❏ Example: 
❏ underlying processes while subject is at rest in an fMRI

❏ “attentive state” (A)
❏ “default state” (D)

15

latent states

  observations

 
...

TR 1 TR 2 TR n

A A D
v1
v2
…
vm

voxel values for 
the m voxels 
during TR n

o1 o2 on



What if there are latent processes?
❏ Dependence in observations may be due to dependence in latent states

❏ Example: 
❏ underlying processes while subject is at rest in an fMRI

❏ “attentive state” (A)
❏ “default state” (D)

❏ voxel values for ROIs in certain TRs may depend on whether subject is in state A or D

16

latent states

  observations

 
...

TR 1 TR 2 TR n

A A D
v1
v2
…
vm

voxel values for 
the m voxels 
during TR n

o1 o2 on



What if there are latent processes?
❏ Dependence in observations may be due to dependence in latent states

❏ Example: 
❏ underlying processes while subject is at rest in an fMRI

❏ “attentive state” (A)
❏ “default state” (D)

❏ voxel values for ROIs in certain TRs may depend on whether subject is in state A or D
❏ transitioning between states may help predict voxel values during next TR 

17

latent states

  observations

 
...

TR 1 TR 2 TR n

v1
v2
…
vm

voxel values for 
the m voxels 
during TR n

A A D

o1 o2 on



 

Hidden Markov model (HMM)
❏ Observation space Ot∊ {x1,x2,...,xk}

❏ observed data
❏ can be discrete or real-valued
❏ example: voxel values for ROI 1 during one TR

18

...

o1 o2 on

s1 s2 sn



 

Hidden Markov model (HMM)
❏ Observation space Ot∊ {x1,x2,...,xk}

❏ observed data
❏ can be discrete or real-valued
❏ example: voxel values for ROI 1 during one TR

❏ Hidden state space St∊ {1,...,m} 
❏ latent states
❏ discrete 
❏ example: A (attentive state), D (default state)

19

...

o1 o2 on

s1 s2 sn



 

Hidden Markov model (HMM)
❏ Observation space Ot∊ {x1,x2,...,xk}

❏ observed data
❏ can be discrete or real-valued
❏ example: voxel values for ROI 1 during one TR

❏ Hidden state space St∊ {1,...,m} 
❏ latent states
❏ discrete 
❏ example: A (attentive state), D (default state)

❏ Observed states are usually shaded

20

...

o1 o2 on

s1 s2 sn



What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

21

o1 o2 on

TR 1 TR 2 TR n



What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations

22

o1 o2 on

TR 1 TR 2 TR n



What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations
❏ hypothesis: at rest, the brain switches between an attentive and default state

23

 
...

o1 o2 on

TR 1 TR 2 TR n

? ? ?



What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations
❏ hypothesis: at rest, the brain switches between an attentive and default state 

❏ test with HMM: given our hypothesis, how likely is the sequence of observed ROI voxel values 
{o1,..,on}

 ?

24

 
...

o1 o2 on

TR 1 TR 2 TR n

? ? ?



What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations
❏ hypothesis: at rest, the brain switches between an attentive and default state

❏ test with HMM: given our hypothesis, how likely is the sequence of observed ROI voxel values 
{o1,..,on}

 ?

❏ Infer the best sequence of hidden states that led to the observations

25

 
...

o1 o2 on

TR 1 TR 2 TR n

? ? ?



What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations
❏ hypothesis: at rest, the brain switches between an attentive and default state

❏ test with HMM: given our hypothesis, how likely is the sequence of observed ROI voxel values 
{o1,..,on}

 ?

❏ Infer the best sequence of hidden states that led to the observations
❏ Inferring what brain state the subject was in during each TR

26

 
...

o1 o2 on

TR 1 TR 2 TR n

? ? ?



What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations
❏ hypothesis: at rest, the brain switches between an attentive and default state

❏ test with HMM: given our hypothesis, how likely is the sequence of observed ROI voxel values 
{o1,..,on}

 ?

❏ Infer the best sequence of hidden states that led to the observations
❏ Inferring what brain state the subject was in during each TR

❏ How are observations emitted from the hidden states? How does the model 
transition from one hidden state to another?

27

 
...

o1 o2 on

TR 1 TR 2 TR n

? ? ?



What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations  
❏ hypothesis: at rest, the brain switches between an attentive and default state

❏ test with HMM: given our hypothesis, how likely is the sequence of observed ROI voxel values 
{o1,..,on}

 ? 

❏ Infer the best sequence of hidden states that led to the observations
❏ Inferring what brain state the subject was in during each TR    

❏ How are observations emitted from the hidden states? How does the model 
transition from one hidden state to another?
❏ Learn how the observed voxel values for a TR are related to the current brain state

28

 
...

o1 o2 on

TR 1 TR 2 TR n

? ? ?



What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations   
❏ hypothesis: at rest, the brain switches between an attentive and default state

❏ test with HMM: given our hypothesis, how likely is the sequence of observed ROI voxel values 
{o1,..,on}

 ? 

❏ Infer the best sequence of hidden states that led to the observations 
❏ Inferring what brain state the subject was in during each TR      

❏ How are observations emitted from the hidden states? How does the model 
transition from one hidden state to another?   
❏ Learn how the observed voxel values for a TR are related to the current brain state
❏ Learn how the brain transitions between attentive and default states  29

 
...

o1 o2 on

TR 1 TR 2 TR n

? ? ?



What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations   Forward algorithm
❏ hypothesis: at rest, the brain switches between an attentive and default state

❏ test with HMM: given our hypothesis, how likely is the sequence of observed ROI voxel values 
{o1,..,on}

 ? 

❏ Infer the best sequence of hidden states that led to the observations 
❏ Inferring what brain state the subject was in during each TR      Viterbi algorithm

❏ How are observations emitted from the hidden states? How does the model 
transition from one hidden state to another?   Expectation-Maximization (EM)
❏ Learn how the observed voxel values for a TR are related to the current brain state
❏ Learn how the brain transitions between attentive and default states  30

 
...

o1 o2 on

TR 1 TR 2 TR n

? ? ?



How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)

31

 
...

o1 o2 on

TR 1 TR 2 TR n

? ? ?
s1 s2 sn



How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM

32

 
...

o1 o2 on

TR 1 TR 2 TR n

? ? ?
s1 s2 sn



How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model

33

 
...

o1 o2 on

TR 1 TR 2 TR n

? ? ?
s1 s2 sn



How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D

34

 
...

o1 o2 on

TR 1 TR 2 TR n

A A D
s1 s2 sn



How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D

35

 
...

o1 o2 on

TR 1 TR 2 TR n

A A D
P(s1=A) s1 s2 sn



How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D

36

 
...

o1 o2 on

TR 1 TR 2 TR n

A A D

P
(o1|s1=A)

P(s1=A) s1 s2 sn



How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D

37

 
...

o1 o2 on

TR 1 TR 2 TR n

A A D

P
(o1|s1=A)

P(s1=A)
P
(si+1=A|si=A)s1 s2 sn



How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D

❏ But we don’t know what the hidden state values are!

38

 
...

o1 o2 on

TR 1 TR 2 TR n

? ? ?
s1 s2 sn



How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D

❏ But we don’t know what the hidden state values are!
❏ So how can we evaluate P(o1,...,on)?

39

 
...

o1 o2 on

TR 1 TR 2 TR n

? ? ?
s1 s2 sn



How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D

❏ But we don’t know what the hidden state values are!
❏ So how can we evaluate P(o1,...,on)?

❏ calculate P(o1,...,on) under all possibilities for {s1,...,sn} 
❏ and sum them since we don’t know which {s1,...,sn} is correct

40

 
...

o1 o2 on

TR 1 TR 2 TR n

? ? ?
s1 s2 sn



How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D

❏ But we don’t know what the hidden state values are!
❏ So how can we evaluate P(o1,...,on)?

❏ calculate P(o1,...,on) under all possibilities for {s1,...,sn} 
❏ and sum them since we don’t know which {s1,...,sn} is correct

❏ How many possibilities for {s1,...,sn}?
41

 
...

o1 o2 on

TR 1 TR 2 TR n

? ? ?
s1 s2 sn



How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D

❏ But we don’t know what the hidden state values are!
❏ So how can we evaluate P(o1,...,on)?

❏ calculate P(o1,...,on) under all possibilities for {s1,...,sn} 
❏ and sum them since we don’t know which {s1,...,sn} is correct

❏ How many possibilities for {s1,...,sn}? 2n

42

 
...

o1 o2 on

TR 1 TR 2 TR n

? ? ?
s1 s2 sn



How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D

❏ But we don’t know what the hidden state values are!
❏ So how can we evaluate P(o1,...,on)?

❏ calculate P(o1,...,on) under all possibilities for {s1,...,sn} 
❏ and sum them since we don’t know which {s1,...,sn} is correct

❏ How many possibilities for {s1,...,sn}? 2n

❏ forward algorithm is a clever way to do this 43

 
...

o1 o2 on

TR 1 TR 2 TR n

? ? ?
s1 s2 sn



❏ Key idea: recognize that there is a lot of overlap between possibilities for 
{s1,...,sn}, so instead of recalculating the whole probability for each possibility, 
store probabilities for smaller pieces of the sequence and reuse

Forward algorithm: computationally friendly way to 
calculate probability of observed sequence

44



❏ Key idea: recognize that there is a lot of overlap between possibilities for 
{s1,...,sn}, so instead of recalculating the whole probability for each possibility, 
store probabilities for smaller pieces of the sequence and reuse

❏ First subunits: P(s1=A)P(o1|s1=A) and P(s1=D)P(o1|s1=D)

Forward algorithm: computationally friendly way to 
calculate probability of observed sequence

45

 

o1

A
P(s1=A)

P
(o1|s1=A)



❏ Key idea: recognize that there is a lot of overlap between possibilities for 
{s1,...,sn}, so instead of recalculating the whole probability for each possibility, 
store probabilities for smaller pieces of the sequence and reuse

❏ First subunits: P(s1=A)P(o1|s1=A) and P(s1=D)P(o1|s1=D)
❏ All further subunits: sum of emission x transition x previous subunit

Forward algorithm: computationally friendly way to 
calculate probability of observed sequence

46

 

o1

A
P
(o2|s2=A)

 

o2

A

P
(si+1=A|si=A)

 

o1

A  

o2

D

P
(si+1=D|si=A)

P(o2|s2=D)



Problem 2: infer best sequence of hidden states that 
results in the sequence of observations
❏ Viterbi algorithm: also relies on recursive computation using subunits

47



Problem 2: infer best sequence of hidden states that 
results in the sequence of observations
❏ Viterbi algorithm: also relies on recursive computation using subunits
❏ Starting with the second hidden state, for each hidden state until the last one, 

we calculate the probability of the most likely path that ends in this hidden state

48



Problem 2: infer best sequence of hidden states that 
results in the sequence of observations
❏ Viterbi algorithm: also relies on recursive computation using subunits
❏ Starting with the second hidden state, for each hidden state until the last one, 

we calculate the probability of the most likely path that ends in this hidden state
❏ For each of these probabilities, we record the previous hidden state in the most 

likely sequence => this enables us to follow the most probable path backwards 
once we’re at the end of the sequence

49



Problem 3: learning HMM emissions and transitions
❏ So far, we’ve assumed that the emission and transition probabilities were 

already learned

50



Problem 3: learning HMM emissions and transitions
❏ So far, we’ve assumed that the emission and transition probabilities were 

already learned
❏ But how do we do this? Expectation-maximization (EM)!

51



Problem 3: learning HMM emissions and transitions
❏ So far, we’ve assumed that the emission and transition probabilities were 

already learned
❏ But how do we do this? Expectation-maximization (EM)!
❏ Start with random initializations of parameters, then iterate 2 steps:

52



Problem 3: learning HMM emissions and transitions
❏ So far, we’ve assumed that the emission and transition probabilities were 

already learned
❏ But how do we do this? Expectation-maximization (EM)!
❏ Start with random initializations of parameters, then iterate 2 steps:

❏ E-step: fix parameters, find expected state assignments

53



Problem 3: learning HMM emissions and transitions
❏ So far, we’ve assumed that the emission and transition probabilities were 

already learned
❏ But how do we do this? Expectation-maximization (EM)!
❏ Start with random initializations of parameters, then iterate 2 steps:

❏ E-step: fix parameters, find expected state assignments
❏ M-step: fix expected state assignments, update parameters

54



Problem 3: learning HMM emissions and transitions
❏ So far, we’ve assumed that the emission and transition probabilities were 

already learned
❏ But how do we do this? Expectation-maximization (EM)!
❏ Start with random initializations of parameters, then iterate 2 steps:

❏ E-step: fix parameters, find expected state assignments
❏ M-step: fix expected state assignments, update parameters

❏ Very general algorithm for learning parameters in models with latent variables

55



Latent variable models takeaways
❏ Used to analyze sequential data (such as time series)

56



Latent variable models takeaways
❏ Used to analyze sequential data (such as time series)
❏ Hidden Markov model is an example of such a model, where the hidden 

states can take discrete values

57



Latent variable models takeaways
❏ Used to analyze sequential data (such as time series)
❏ Hidden Markov model is an example of such a model, where the hidden 

states can take discrete values
❏ We can use HMMs for 3 main purposes:

58



Latent variable models takeaways
❏ Used to analyze sequential data (such as time series)
❏ Hidden Markov model is an example of such a model, where the hidden 

states can take discrete values
❏ We can use HMMs for 3 main purposes:

❏ Testing a hypothesis about underlying processes in the brain

59



Latent variable models takeaways
❏ Used to analyze sequential data (such as time series)
❏ Hidden Markov model is an example of such a model, where the hidden 

states can take discrete values
❏ We can use HMMs for 3 main purposes:

❏ Testing a hypothesis about underlying processes in the brain
❏ Inferring the best sequence of underlying processes in the brain that emits the observations

60



Latent variable models takeaways
❏ Used to analyze sequential data (such as time series)
❏ Hidden Markov model is an example of such a model, where the hidden 

states can take discrete values
❏ We can use HMMs for 3 main purposes:

❏ Testing a hypothesis about underlying processes in the brain
❏ Inferring the best sequence of underlying processes in the brain that emits the observations

❏ Learning how the observations were emitted from the brain states, and how the brain 
transitions from one underlying state to another

61



Latent variable models takeaways
❏ Used to analyze sequential data (such as time series)
❏ Hidden Markov model is an example of such a model, where the hidden 

states can take discrete values
❏ We can use HMMs for 3 main purposes:

❏ Testing a hypothesis about underlying processes in the brain
❏ Inferring the best sequence of underlying processes in the brain that emits the observations

❏ Learning how the observations were emitted from the brain states, and how the brain 
transitions from one underlying state to another

❏ SSM (state-space model) is another type of latent variable model that 
accounts for continuous hidden states

62



❏ To learn, we need some teaching, or reward, signal

Can we model human learning with an HMM?

63

 ...

o1 o2 o3

TR 1 TR 2 TR 3

s1 s2 s3



Can we model human learning with an HMM?
❏ To learn, we need some teaching, or reward, signal
❏ What if we incorporate a notion of reward in the HMM?

64

 ...

o1 o2 o3

TR 1 TR 2 TR 3

s1 s2 s3

r1 r2 r3



Can we model human learning with an HMM?
❏ To learn, we need some teaching, or reward, signal
❏ What if we incorporate a notion of reward in the HMM?
❏ Now, we incorporate actions we can take to transition to other states in order 

to maximize our reward

65

a1 a2 an

 ...

o1 o2 o3

TR 1 TR 2 TR 3

s1 s2 s3

r1 r2 r3



Can we model human learning with an HMM?
❏ To learn, we need some teaching, or reward, signal
❏ What if we incorporate a notion of reward in the HMM?
❏ Now, we incorporate actions we can take to transition to other states in order 

to maximize our reward

66

a1 a2 an

 ...

o1 o2 o3

TR 1 TR 2 TR 3

s1 s2 s3

r1 r2 r3

HMM



Can we model human learning with an HMM?
❏ To learn, we need some teaching, or reward, signal
❏ What if we incorporate a notion of reward in the HMM?
❏ Now, we incorporate actions we can take to transition to other states in order 

to maximize our reward

67

a1 a2 an

 ...

o1 o2 o3

TR 1 TR 2 TR 3

s1 s2 s3

r1 r2 r3

HMM

Markov Decision Process 
(MDP)



Can we model human learning with an HMM?
❏ To learn, we need some teaching, or reward, signal
❏ What if we incorporate a notion of reward in the HMM?
❏ Now, we incorporate actions we can take to transition to other states in order 

to maximize our reward

68

a1 a2 an

 ...

o1 o2 o3

TR 1 TR 2 TR 3

s1 s2 s3

r1 r2 r3

HMM

Markov Decision Process 
(MDP)

Partially Observable 
Markov Decision Process 
(POMDP)



Reinforcement learning (RL): learning how to take 
the best actions to maximize expected future reward

❏ Delayed reward vs immediate reward

69

a1 a2 an

 ...

o1 o2 o3

s1 s2 s3

r1 r2 r3



Reinforcement learning (RL): learning how to take 
the best actions to maximize expected future reward

❏ Delayed reward vs immediate reward
❏ We can’t choose the best action to take right now with regular supervised methods

70

a1 a2 an

 ...

o1 o2 o3

s1 s2 s3

r1 r2 r3



Reinforcement learning (RL): learning how to take 
the best actions to maximize expected future reward

❏ Delayed reward vs immediate reward
❏ We can’t choose the best action to take right now with regular supervised methods

❏ RL in a nutshell:
❏ Learning function ᵨ: S->A that tells us what the best action to take is in the current state

71

a1 a2 an

 ...

o1 o2 o3

s1 s2 s3

r1 r2 r3

ᵨ



Reinforcement learning (RL): learning how to take 
the best actions to maximize expected future reward

❏ Delayed reward vs immediate reward
❏ We can’t choose the best action to take right now with regular supervised methods

❏ RL in a nutshell:
❏ Learning function ᵨ: S->A that tells us what the best action to take is in the current state

❏ ᵨ is also called a “policy”

72

a1 a2 an

 ...

o1 o2 o3

s1 s2 s3

r1 r2 r3

ᵨ



Reinforcement learning (RL): learning how to take 
the best actions to maximize expected future reward

❏ Delayed reward vs immediate reward
❏ We can’t choose the best action to take right now with regular supervised methods

❏ RL in a nutshell:
❏ Learning function ᵨ: S->A that tells us what the best action to take is in the current state

❏ ᵨ is also called a “policy”
❏ Given any policy ᵨ, we can define the expected
❏ future reward if we start at state s as:

73

a1 a2 an

 ...

o1 o2 o3

s1 s2 s3

r1 r2 r3

ᵨ



Reinforcement learning (RL): learning how to take 
the best actions to maximize expected future reward

❏ Delayed reward vs immediate reward
❏ We can’t choose the best action to take right now with regular supervised methods

❏ RL in a nutshell:
❏ Learning function ᵨ: S->A that tells us what the best action to take is in the current state

❏ ᵨ is also called a “policy”
❏ Given any policy ᵨ, we can define the expected
❏ future reward if we start at state s as:

74

a1 a2 an

 ...

o1 o2 o3

s1 s2 s3

r1 r2 r3

ᵨ



Reinforcement learning (RL): learning how to take 
the best actions to maximize expected future reward

❏ Delayed reward vs immediate reward
❏ We can’t choose the best action to take right now with regular supervised methods

❏ RL in a nutshell:
❏ Learning function ᵨ: S->A that tells us what the best action to take is in the current state

❏ ᵨ is also called a “policy”
❏ Given any policy ᵨ, we can define the expected
❏ future reward if we start at state s as:

75

a1 a2 an

 ...

o1 o2 o3

s1 s2 s3

r1 r2 r3

ᵨ



Reinforcement learning (RL): learning how to take 
the best actions to maximize expected future reward

❏ Delayed reward vs immediate reward
❏ We can’t choose the best action to take right now with regular supervised methods

❏ RL in a nutshell:
❏ Learning function ᵨ: S->A that tells us what the best action to take is in the current state

❏ ᵨ is also called a “policy”
❏ Given any policy ᵨ, we can define the expected
❏ future reward if we start at state s as:

76

a1 a2 an

 ...

o1 o2 o3

s1 s2 s3

r1 r2 r3

ᵨ



Reinforcement learning (RL): learning how to take 
the best actions to maximize expected future reward

❏ Delayed reward vs immediate reward
❏ We can’t choose the best action to take right now with regular supervised methods

❏ RL in a nutshell:
❏ Learning function ᵨ: S->A that tells us what the best action to take is in the current state

❏ ᵨ is also called a “policy”
❏ Given any policy ᵨ, we can define the expected
❏ future reward if we start at state s as:

❏ We call this the value function of policy ᵨ

77

a1 a2 an

 ...

o1 o2 o3

s1 s2 s3

r1 r2 r3

ᵨ



Reinforcement learning (RL): learning how to take 
the best actions to maximize expected future reward

❏ Delayed reward vs immediate reward
❏ We can’t choose the best action to take right now with regular supervised methods

❏ RL in a nutshell:
❏ Learning function ᵨ: S->A that tells us what the best action to take is in the current state

❏ ᵨ is also called a “policy”
❏ Given any policy ᵨ, we can define the expected
❏ future reward if we start at state s as:

❏ We call this the value function of policy ᵨ
❏ Now, we can compute the best policy:

78

a1 a2 an

 ...

o1 o2 o3

s1 s2 s3

r1 r2 r3

ᵨ



Reinforcement learning (RL): learning how to take 
the best actions to maximize expected future reward

❏ Delayed reward vs immediate reward
❏ We can’t choose the best action to take right now with regular supervised methods

❏ RL in a nutshell:
❏ Learning function ᵨ: S->A that tells us what the best action to take is in the current state

❏ ᵨ is also called a “policy”
❏ Given any policy ᵨ, we can define the expected
❏ future reward if we start at state s as:

❏ We call this the value function of policy ᵨ
❏ Now, we can compute the best policy:

79

a1 a2 an

 ...

o1 o2 o3

s1 s2 s3

r1 r2 r3

ᵨ



Example: what are the VḖ(s) values?
❏ Image there is a robot that needs to get to the goal state G
❏ Each square is a state
❏ Circled arrows show the policy ᵨ
❏ Let ᶕ = 0.9

80



Example: what are the VḖ(s) values?
❏ Image there is a robot that needs to get to the goal state G
❏ Each square is a state
❏ Circled arrows show the policy ᵨ
❏ Let ᶕ = 0.9

81

What is VḖ(x)?



Example: what are the VḖ(s) values?
❏ Image there is a robot that needs to get to the goal state G
❏ Each square is a state
❏ Circled arrows show the policy ᵨ
❏ Let ᶕ = 0.9

82

What is VḖ(x)? 0

0



Example: what are the VḖ(s) values?
❏ Image there is a robot that needs to get to the goal state G
❏ Each square is a state
❏ Circled arrows show the policy ᵨ
❏ Let ᶕ = 0.9

83

What is VḖ(x)? 

0



Example: what are the VḖ(s) values?
❏ Image there is a robot that needs to get to the goal state G
❏ Each square is a state
❏ Circled arrows show the policy ᵨ
❏ Let ᶕ = 0.9

84

What is VḖ(x)? 100

0

100



Example: what are the VḖ(s) values?
❏ Image there is a robot that needs to get to the goal state G
❏ Each square is a state
❏ Circled arrows show the policy ᵨ
❏ Let ᶕ = 0.9

85

What is VḖ(x)? 

0

100



Example: what are the VḖ(s) values?
❏ Image there is a robot that needs to get to the goal state G
❏ Each square is a state
❏ Circled arrows show the policy ᵨ
❏ Let ᶕ = 0.9

86

What is VḖ(x)? 0.9
x100 = 90

0

10090



Example: what are the VḖ(s) values?
❏ Image there is a robot that needs to get to the goal state G
❏ Each square is a state
❏ Circled arrows show the policy ᵨ
❏ Let ᶕ = 0.9

87

What is VḖ(x)? 

0

10090



Example: what are the VḖ(s) values?
❏ Image there is a robot that needs to get to the goal state G
❏ Each square is a state
❏ Circled arrows show the policy ᵨ
❏ Let ᶕ = 0.9

88

What is VḖ(x)? 0.9x0.
9x100 = 81

0

10090

81



Example: what are the VḖ(s) values?
❏ Image there is a robot that needs to get to the goal state G
❏ Each square is a state
❏ Circled arrows show the policy ᵨ
❏ Let ᶕ = 0.9

89

What is VḖ(x)? 

0

10090

81



Example: what are the VḖ(s) values?
❏ Image there is a robot that needs to get to the goal state G
❏ Each square is a state
❏ Circled arrows show the policy ᵨ
❏ Let ᶕ = 0.9

90

What is VḖ(x)? 0.9x0.
9x0.9x100 = 73

0

10090

8173



Example: what are the VḖ(s) values?
❏ Image there is a robot that needs to get to the goal state G
❏ Each square is a state
❏ Circled arrows show the policy ᵨ
❏ Let ᶕ = 0.9

91

What is VḖ(x)? 

0

10090

8173



Example: what are the VḖ(s) values?
❏ Image there is a robot that needs to get to the goal state G
❏ Each square is a state
❏ Circled arrows show the policy ᵨ
❏ Let ᶕ = 0.9

92

What is VḖ(x)? 0.9x0.
9x0.9x100 = 66

0

10090

8173

66



Example: what are the best V*(s) values?
❏ What is the best policy?

93



Example: what are the best V*(s) values?
❏ What is the best policy?

94

What is V*(x)? 



Example: what are the best V*(s) values?
❏ What is the best policy?

95

What is V*(x)? Still 0 

0



Example: what are the best V*(s) values?
❏ What is the best policy?

96

What is V*(x)? 

0



Example: what are the best V*(s) values?
❏ What is the best policy?

97

What is V*(x)? 100 

0

100



Example: what are the best V*(s) values?
❏ What is the best policy?

98

What is V*(x)? 

0

100



Example: what are the best V*(s) values?
❏ What is the best policy?

99

What is V*(x)? 100 

0

100

100



Example: what are the best V*(s) values?
❏ What is the best policy?

100

What is V*(x)? 

0

100

100



Example: what are the best V*(s) values?
❏ What is the best policy?

101

What is V*(x)? 90 

0

100

100

90



Example: what are the best V*(s) values?
❏ What is the best policy?

102

What is V*(x)? 

0

100

100

90



Example: what are the best V*(s) values?
❏ What is the best policy?

103

What is V*(x)? 81

0

100

100

9081



Example: what are the best V*(s) values?
❏ What is the best policy?

104

What is V*(x)? 

0

100

100

9081



Example: what are the best V*(s) values?
❏ What is the best policy?

105

What is V*(x)? 90 

0

100

100

9081

90



RL takeaways
❏ Reinforcement learning introduces the notion of delayed reward and uses it to 

learn the best actions that will maximize this future reward

106



RL takeaways
❏ Reinforcement learning introduces the notion of delayed reward and uses it to 

learn the best actions that will maximize this future reward
❏ Two ways to learn the best policy: 

107



RL takeaways
❏ Reinforcement learning introduces the notion of delayed reward and uses it to 

learn the best actions that will maximize this future reward
❏ Two ways to learn the best policy: 

❏ Q-learning
❏ Temporal Difference (TD) learning

108



RL takeaways
❏ Reinforcement learning introduces the notion of delayed reward and uses it to 

learn the best actions that will maximize this future reward
❏ Two ways to learn the best policy: 

❏ Q-learning
❏ Temporal Difference (TD) learning

❏ Error in value prediction using TD-learning is the best computational model of dopamine 

release in monkeys during anticipation of future reward => hypothesis that dopamine 
does reward prediction (Schultz et al. Science, 1997)

109



RL takeaways
❏ Reinforcement learning introduces the notion of delayed reward and uses it to 

learn the best actions that will maximize this future reward
❏ Two ways to learn the best policy: 

❏ Q-learning
❏ Temporal Difference (TD) learning

❏ Error in value prediction using TD-learning is the best computational model of dopamine 

release in monkeys during anticipation of future reward => hypothesis that dopamine 
does reward prediction (Schultz et al. Science, 1997)

❏ Recent advances in RL: combining it with deep learning!

110



RL takeaways
❏ Reinforcement learning introduces the notion of delayed reward and uses it to 

learn the best actions that will maximize this future reward
❏ Two ways to learn the best policy: 

❏ Q-learning
❏ Temporal Difference (TD) learning

❏ Error in value prediction using TD-learning is the best computational model of dopamine 

release in monkeys during anticipation of future reward => hypothesis that dopamine 
does reward prediction (Schultz et al. Science, 1997)

❏ Recent advances in RL: combining it with deep learning!
❏ learning deep policy and value networks

111



Deep learning!
❏ Loosely inspired by neural connections in the brain

112



Deep learning!
❏ Loosely inspired by neural connections in the brain
❏ Goal: learn hierarchy of features

❏ higher level features are formed by lower level features

113



Deep learning!
❏ Loosely inspired by neural connections in the brain
❏ Goal: learn hierarchy of features

❏ higher level features are formed by lower level features

❏ Used in neuroscience to study intermediate stages                                                                                                           
❏ of representations

114



Deep learning!
❏ Loosely inspired by neural connections in the brain
❏ Goal: learn hierarchy of features

❏ higher level features are formed by lower level features

❏ Used in neuroscience to study intermediate stages                                                                                                           
❏ of representations
❏ There are a few important types: 

115



Deep learning!
❏ Loosely inspired by neural connections in the brain
❏ Goal: learn hierarchy of features

❏ higher level features are formed by lower level features

❏ Used in neuroscience to study intermediate stages                                                                                                           
❏ of representations
❏ There are a few important types: 

❏ Neural networks
❏ Recurrent neural networks (RNNs)

❏ Long short-term memory network (LSTM)
❏ Deep belief networks (DBNs)
❏ Convolutional neural networks (CNNs)

116



Artificial neural networks are inspired by connections 
between real neurons

117
data instance    (like 
dendritic input)



Artificial neural networks are inspired by connections 
between real neurons

118
data instance    (like 
dendritic input)

learned weights      
(like synaptic weights)



Artificial neural networks are inspired by connections 
between real neurons

119
data instance    (like 
dendritic input)

learned weights      
(like synaptic weights)

activation function                         
(like firing threshold in neurons)



What is a good activation function f?
❏ Want non-linear f

120



What is a good activation function f?
❏ Want non-linear f
❏ Some typical examples:

❏ logistic (or sigmoid) function

❏ hyperbolic tangent function

❏ rectified linear function

121



Perceptron: simplest neural network

❏ activation function is just a threshold at 0 (checks for the sign of the weighted 
input sum)

122



Perceptron: simplest neural network

❏ activation function is just a threshold at 0 (checks for the sign of the weighted 
input sum)

❏ no hidden layer

123



Perceptron: simplest neural network

❏ activation function is just a threshold at 0 (checks for the sign of the weighted 
input sum)

❏ no hidden layer
❏ goal: given the input x and label y, find weights w such that y = sgn(wTx)

124



How do we learn the weights in the perceptron?
❏ Key idea: find classification error and update          

weights to reduce this error

125



How do we learn the weights in the perceptron?
❏ Key idea: find classification error and update          

weights to reduce this error

❏ step 1: initialize w0,...,wN randomly

126



How do we learn the weights in the perceptron?
❏ Key idea: find classification error and update          

weights to reduce this error

❏ step 1: initialize w0,...,wN randomly
❏ step 2: let xk be a training data instance misclassified by 

w(t-1)

127



How do we learn the weights in the perceptron?
❏ Key idea: find classification error and update          

weights to reduce this error

❏ step 1: initialize w0,...,wN randomly
❏ step 2: let xk be a training data instance misclassified by 

w(t-1)
❏ step 3: if there is such an instance, calculate 

classification error  ε(t) = yk - sgn(w(t-1)Txk)

128



How do we learn the weights in the perceptron?
❏ Key idea: find classification error and update          

weights to reduce this error

❏ step 1: initialize w0,...,wN randomly
❏ step 2: let xk be a training data instance misclassified by 

w(t-1)
❏ step 3: if there is such an instance, calculate 

classification error  ε(t) = yk - sgn(w(t-1)Txk)
❏ step 4: account for error by updating weights:

❏ w(t) = w(t-1) + ᶓε(t)xk

129



How do we learn the weights in the perceptron?
❏ Key idea: find classification error and update          

weights to reduce this error

❏ step 1: initialize w0,...,wN randomly
❏ step 2: let xk be a training data instance misclassified by 

w(t-1)
❏ step 3: if there is such an instance, calculate 

classification error  ε(t) = yk - sgn(w(t-1)Txk)
❏ step 4: account for error by updating weights:

❏ w(t) = w(t-1) + ᶓε(t)xk

❏ step 5: t = t+1, end when there are no misclassifications

130



We add more layers => multilayer perceptron (MLP)
❏ Additional layers (not input or output) are called “hidden” layers

131



We add more layers => multilayer perceptron (MLP)
❏ Additional layers (not input or output) are called “hidden” layers

❏ Still need to learn weights W, but now we have multiple layers
132



Learning weights with multiple layers: 
backpropagation of error
❏ When there is a misclassification, different neurons have different amount of 

responsibility for it

133



Learning weights with multiple layers: 
backpropagation of error
❏ When there is a misclassification, different neurons have different amount of 

responsibility for it
❏ Key observation: the misclassification error for a neuron in layer m can be 

calculated from the misclassification errors for all of the  neurons in layer m+1
❏ because the network is fully connected

134



Learning weights with multiple layers: 
backpropagation of error
❏ When there is a misclassification, different neurons have different amount of 

responsibility for it
❏ Key observation: the misclassification error for a neuron in layer m can be 

calculated from the misclassification errors for all of the  neurons in layer m+1
❏ because the network is fully connected

❏ So we can calculate the final misclassification error and propagate is 
backward

135



Learning weights with multiple layers: 
backpropagation of error
❏ When there is a misclassification, different neurons have different amount of 

responsibility for it
❏ Key observation: the misclassification error for a neuron in layer m can be 

calculated from the misclassification errors for all of the  neurons in layer m+1
❏ because the network is fully connected

❏ So we can calculate the final misclassification error and propagate is 
backward

❏ Update weights according to the error

136



Neural networks for sequential data: recurrent NNs
❏ In sequential data, history can help predict the future

137



Neural networks for sequential data: recurrent NNs
❏ In sequential data, history can help predict the future
❏ Would like to explicitly capture state history in the neural 

network

138



Neural networks for sequential data: recurrent NNs
❏ In sequential data, history can help predict the future
❏ Would like to explicitly capture state history in the neural 

network
❏ Add a recurrent state

139



Neural networks for sequential data: recurrent NNs
❏ In sequential data, history can help predict the future
❏ Would like to explicitly capture state history in the neural 

network
❏ Add a recurrent state

❏ In regular RNNs, the recurrent state is overwritten 
frequently

140



Neural networks for sequential data: recurrent NNs
❏ In sequential data, history can help predict the future
❏ Would like to explicitly capture state history in the neural 

network
❏ Add a recurrent state

❏ In regular RNNs, the recurrent state is overwritten 
frequently
❏ Good if important events happen close together

141



Neural networks for sequential data: recurrent NNs
❏ In sequential data, history can help predict the future
❏ Would like to explicitly capture state history in the neural 

network
❏ Add a recurrent state

❏ In regular RNNs, the recurrent state is overwritten 
frequently
❏ Good if important events happen close together

❏ But what if there are large delays before important events?

142



Neural networks for sequential data: recurrent NNs
❏ In sequential data, history can help predict the future
❏ Would like to explicitly capture state history in the neural 

network
❏ Add a recurrent state

❏ In regular RNNs, the recurrent state is overwritten 
frequently
❏ Good if important events happen close together

❏ But what if there are large delays before important events?
❏ Long short-term memory (LSTM) networks!

143



Neural networks for sequential data: recurrent NNs
❏ In sequential data, history can help predict the future
❏ Would like to explicitly capture state history in the neural 

network
❏ Add a recurrent state

❏ In regular RNNs, the recurrent state is overwritten 
frequently
❏ Good if important events happen close together

❏ But what if there are large delays before important events?
❏ Long short-term memory (LSTM) networks!

❏ Best known result in connected handwriting recognition

144



Neural networks for sequential data: recurrent NNs
❏ In sequential data, history can help predict the future
❏ Would like to explicitly capture state history in the neural 

network
❏ Add a recurrent state

❏ In regular RNNs, the recurrent state is overwritten 
frequently
❏ Good if important events happen close together

❏ But what if there are large delays before important events?
❏ Long short-term memory (LSTM) networks!

❏ Best known result in connected handwriting recognition
❏ Also used for automatic speech recognition

145



Neural networks for sequential data: recurrent NNs
❏ In sequential data, history can help predict the future
❏ Would like to explicitly capture state history in the neural 

network
❏ Add a recurrent state

❏ In regular RNNs, the recurrent state is overwritten 
frequently
❏ Good if important events happen close together

❏ But what if there are large delays before important events?
❏ Long short-term memory (LSTM) networks!

❏ Best known result in connected handwriting recognition
❏ Also used for automatic speech recognition

❏ In 2016, Google, Apple, Microsoft, Baidu reveal LSTMs as 
fundamental components in their technologies 146



LSTMs: remembering values for arbitrary length of 
time
❏ Contains LSTM blocks

147

input 
value

input 
gate

forget 
gate

output 
gate



LSTMs: remembering values for arbitrary length of 
time
❏ Contains LSTM blocks

❏ each block contains gates that determine 

when the input is significant enough to 
remember

148

input 
value

input 
gate

forget 
gate

output 
gate



LSTMs: remembering values for arbitrary length of 
time
❏ Contains LSTM blocks

❏ each block contains gates that determine 

when the input is significant enough to 
remember

149

input 
value

input 
gate

forget 
gate

output 
gate



LSTMs: remembering values for arbitrary length of 
time
❏ Contains LSTM blocks

❏ each block contains gates that determine 

when the input is significant enough to 
remember

150

input 
value

input 
gate

forget 
gate

output 
gate



LSTMs: remembering values for arbitrary length of 
time
❏ Contains LSTM blocks

❏ each block contains gates that determine 

when the input is significant enough to 
remember

151

input 
value

input 
gate

forget 
gate

output 
gate



LSTMs: remembering values for arbitrary length of 
time
❏ Contains LSTM blocks

❏ each block contains gates that determine 

when the input is significant enough to 
remember

152

input 
value

input 
gate

forget 
gate

output 
gate



LSTMs: remembering values for arbitrary length of 
time
❏ Contains LSTM blocks

❏ each block contains gates that determine 

when the input is significant enough to 
remember

❏ LSTMs, like regular RNNs, can be 
trained with backpropagation

153

input 
value

input 
gate

forget 
gate

output 
gate



3 main problems with backpropagation
❏ Problem 1: random initialization of weights can lead to bad local minimum

154



3 main problems with backpropagation
❏ Problem 1: random initialization of weights can lead to bad local minimum
❏ Problem 2: learning time does not scale well with number of hidden layers => 

slow

155



3 main problems with backpropagation
❏ Problem 1: random initialization of weights can lead to bad local minimum
❏ Problem 2: learning time does not scale well with number of hidden layers => 

slow
❏ Problem 3: need a lot of data for good estimates of weights when we start 

from random initializations and to calculate classification error, we need labels 
=> need a lot of labeled data, which is often scarce

156



Partial solution: deep belief networks (DBN)
❏ DBNs use a technique called “pre-training” to train each pair of successive 

layers separately without using labeled data and backpropagation

157



Partial solution: deep belief networks (DBN)
❏ DBNs use a technique called “pre-training” to train each pair of successive 

layers separately without using labeled data and backpropagation
❏  uses the resulting pre-trained weights to initialize the DBN weights for the task

158



Partial solution: deep belief networks (DBN)
❏ DBNs use a technique called “pre-training” to train each pair of successive 

layers separately without using labeled data and backpropagation
❏  uses the resulting pre-trained weights to initialize the DBN weights for the task

❏ avoids random initialization (problem 1 of backpropagation)

159



Partial solution: deep belief networks (DBN)
❏ DBNs use a technique called “pre-training” to train each pair of successive 

layers separately without using labeled data and backpropagation
❏  uses the resulting pre-trained weights to initialize the DBN weights for the task

❏ avoids random initialization (problem 1 of backpropagation)
❏ reduces need for a lot of labeled data (problem 3)

160



Partial solution: deep belief networks (DBN)
❏ DBNs use a technique called “pre-training” to train each pair of successive 

layers separately without using labeled data and backpropagation
❏  uses the resulting pre-trained weights to initialize the DBN weights for the task

❏ avoids random initialization (problem 1 of backpropagation)
❏ reduces need for a lot of labeled data (problem 3)

❏ Once the DBN is pre-trained, it is fine-tuned with backpropagation for a 
particular task

161



Partial solution: deep belief networks (DBN)
❏ DBNs use a technique called “pre-training” to train each pair of successive 

layers separately without using labeled data and backpropagation
❏  uses the resulting pre-trained weights to initialize the DBN weights for the task

❏ avoids random initialization (problem 1 of backpropagation)
❏ reduces need for a lot of labeled data (problem 3)

❏ Once the DBN is pre-trained, it is fine-tuned with backpropagation for a 
particular task
❏ reduces the learning time of backprop (problem 2)

162



Partial solution: deep belief networks (DBN)
❏ DBNs use a technique called “pre-training” to train each pair of successive 

layers separately without using labeled data and backpropagation
❏  uses the resulting pre-trained weights to initialize the DBN weights for the task

❏ avoids random initialization (problem 1 of backpropagation)
❏ reduces need for a lot of labeled data (problem 3)

❏ Once the DBN is pre-trained, it is fine-tuned with backpropagation for a 
particular task
❏ reduces the learning time of backprop (problem 2)

❏ So why is it only a partial solution?

163



Partial solution: deep belief networks (DBN)
❏ DBNs use a technique called “pre-training” to train each pair of successive 

layers separately without using labeled data and backpropagation
❏  uses the resulting pre-trained weights to initialize the DBN weights for the task

❏ avoids random initialization (problem 1 of backpropagation)
❏ reduces need for a lot of labeled data (problem 3)

❏ Once the DBN is pre-trained, it is fine-tuned with backpropagation for a 
particular task
❏ reduces the learning time of backprop (problem 2)

❏ So why is it only a partial solution?
❏ pre-training is done in an unsupervised way, in which the objective is to minimize some 

reconstruction error

164



Partial solution: deep belief networks (DBN)
❏ DBNs use a technique called “pre-training” to train each pair of successive 

layers separately without using labeled data and backpropagation
❏  uses the resulting pre-trained weights to initialize the DBN weights for the task

❏ avoids random initialization (problem 1 of backpropagation)
❏ reduces need for a lot of labeled data (problem 3)

❏ Once the DBN is pre-trained, it is fine-tuned with backpropagation for a 
particular task
❏ reduces the learning time of backprop (problem 2)

❏ So why is it only a partial solution?
❏ pre-training is done in an unsupervised way, in which the objective is to minimize some 

reconstruction error

❏ in practice, many times weights learned in this way are not close enough to the ones needed 
for a classification task, and bad local minima are not avoided 165



Another partial solution: convolutional neural 
networks (CNNs)
❏ Inspired by the structure of the visual system (receptive fields of simple and 

complex cells)

166



Another partial solution: convolutional neural 
networks (CNNs)
❏ Inspired by the structure of the visual system (receptive fields of simple and 

complex cells)
❏ Sparse connections between layers (not fully connected like regular NNs)

❏  reduces learning time (problem 2)

167



Another partial solution: convolutional neural 
networks (CNNs)
❏ Inspired by the structure of the visual system (receptive fields of simple and 

complex cells)
❏ Sparse connections between layers (not fully connected like regular NNs)

❏  reduces learning time (problem 2)

❏ Often, researchers take an already trained CNN on a related task and fine-
tune it for the specific task

168



Another partial solution: convolutional neural 
networks (CNNs)
❏ Inspired by the structure of the visual system (receptive fields of simple and 

complex cells)
❏ Sparse connections between layers (not fully connected like regular NNs)

❏  reduces learning time (problem 2)

❏ Often, researchers take an already trained CNN on a related task and fine-
tune it for the specific task
❏ avoids random initialization of weights (problem 1)

169



Another partial solution: convolutional neural 
networks (CNNs)
❏ Inspired by the structure of the visual system (receptive fields of simple and 

complex cells)
❏ Sparse connections between layers (not fully connected like regular NNs)

❏  reduces learning time (problem 2)

❏ Often, researchers take an already trained CNN on a related task and fine-
tune it for the specific task
❏ avoids random initialization of weights (problem 1)
❏ reduces need for labeled data for learning (problem 3)

170



Another partial solution: convolutional neural 
networks (CNNs)
❏ Inspired by the structure of the visual system (receptive fields of simple and 

complex cells)
❏ Sparse connections between layers (not fully connected like regular NNs)

❏  reduces learning time (problem 2)

❏ Often, researchers take an already trained CNN on a related task and fine-
tune it for the specific task
❏ avoids random initialization of weights (problem 1)
❏ reduces need for labeled data for learning (problem 3)

❏ So why only partial solution? 

171



Another partial solution: convolutional neural 
networks (CNNs)
❏ Inspired by the structure of the visual system (receptive fields of simple and 

complex cells)
❏ Sparse connections between layers (not fully connected like regular NNs)

❏  reduces learning time (problem 2)

❏ Often, researchers take an already trained CNN on a related task and fine-
tune it for the specific task
❏ avoids random initialization of weights (problem 1)
❏ reduces need for labeled data for learning (problem 3)

❏ So why only partial solution? 
❏ a CNN trained on a related task is not always available => back to problems 1 and 3

172



Another partial solution: convolutional neural 
networks (CNNs)
❏ Inspired by the structure of the visual system (receptive fields of simple and 

complex cells)
❏ Sparse connections between layers (not fully connected like regular NNs)

❏  reduces learning time (problem 2)

❏ Often, researchers take an already trained CNN on a related task and fine-
tune it for the specific task
❏ avoids random initialization of weights (problem 1)
❏ reduces need for labeled data for learning (problem 3)

❏ So why only partial solution? 
❏ a CNN trained on a related task is not always available => back to problems 1 and 3
❏ though, for vision tasks (e.g. classifying images), a good CNN is available

173



CNN: alternating convolutional and downsampling 
layers

❏ Restricted connections => makes learning the weights more tractable

174



CNN: alternating convolutional and downsampling 
layers

❏ Restricted connections => makes learning the weights more tractable
❏ Convolutional layers = each neuron applies some kernel to its receptive field 

175



CNN: alternating convolutional and downsampling 
layers

❏ Restricted connections => makes learning the weights more tractable
❏ Convolutional layers = each neuron applies some kernel to its receptive field 
❏ Subsampling layers = reduce dimensionality, maintain translational invariance

176



CNN: alternating convolutional and downsampling 
layers

❏ Restricted connections => makes learning the weights more tractable
❏ Convolutional layers = each neuron applies some kernel to its receptive field 
❏ Subsampling layers = reduce dimensionality, maintain translational invariance
❏ Shared weights between feature maps reduce number of parameters to learn

177



Most frequently used CNN is trained on ImageNet
❏ ImageNet is a database of 15M images collected from the web

178



Most frequently used CNN is trained on ImageNet
❏ ImageNet is a database of 15M images collected from the web
❏ 22k categories

179



Most frequently used CNN is trained on ImageNet
❏ ImageNet is a database of 15M images collected from the web
❏ 22k categories
❏ labels provided by people on MTurk

180



Most frequently used CNN is trained on ImageNet
❏ ImageNet is a database of 15M images collected from the web
❏ 22k categories
❏ labels provided by people on MTurk
❏ RGB images (not black and white)

181



CNN results in ImageNet classification challenge
❏ 1k categories, 1.2M training images, 50k validation, 150k testing

182



CNN results in ImageNet classification challenge
❏ 1k categories, 1.2M training images, 50k validation, 150k testing
❏ Classification challenge:

❏ Make 1 guess about the label (top-1 error)
❏ Make 5 guesses about the label (top-5 error)

183



CNN results in ImageNet classification challenge
❏ 1k categories, 1.2M training images, 50k validation, 150k testing
❏ Classification challenge:

❏ Make 1 guess about the label (top-1 error)
❏ Make 5 guesses about the label (top-5 error)

❏ CNN results (won)
❏ Top-1 error: 37.5%
❏ Top-5 error: 17.0%

184



CNN results in ImageNet classification challenge
❏ 1k categories, 1.2M training images, 50k validation, 150k testing
❏ Classification challenge:

❏ Make 1 guess about the label (top-1 error)
❏ Make 5 guesses about the label (top-5 error)

❏ CNN results (won)
❏ Top-1 error: 37.5%
❏ Top-5 error: 17.0%

185



CNN also used in AlphaGo
❏ First off, why is Go so hard?

186



CNN also used in AlphaGo
❏ First off, why is Go so hard?

❏ larger board than chess (19x19)

187



CNN also used in AlphaGo
❏ First off, why is Go so hard?

❏ larger board than chess (19x19)
❏ many more possible board outcomes than chess 

188



CNN also used in AlphaGo
❏ First off, why is Go so hard?

❏ larger board than chess (19x19)
❏ many more possible board outcomes than chess 

❏ each board position has 3 possibilities: empty, black, white

189



CNN also used in AlphaGo
❏ First off, why is Go so hard?

❏ larger board than chess (19x19)
❏ many more possible board outcomes than chess 

❏ each board position has 3 possibilities: empty, black, white
❏ an estimated 1.2% of all board positions are legal

190



CNN also used in AlphaGo
❏ First off, why is Go so hard?

❏ larger board than chess (19x19)
❏ many more possible board outcomes than chess 

❏ each board position has 3 possibilities: empty, black, white
❏ an estimated 1.2% of all board positions are legal

❏ Total number of possible board positions = 319x19x1.2% = 2.1x10170 > # atoms in 
universe

191



CNN also used in AlphaGo
❏ First off, why is Go so hard?

❏ larger board than chess (19x19)
❏ many more possible board outcomes than chess 

❏ each board position has 3 possibilities: empty, black, white
❏ an estimated 1.2% of all board positions are legal

❏ Total number of possible board positions = 319x19x1.2% = 2.1x10170 > # atoms in 
universe

❏ So enumerating all possible board outcomes and scoring them won’t work

192



CNN also used in AlphaGo
❏ First off, why is Go so hard?

❏ larger board than chess (19x19)
❏ many more possible board outcomes than chess 

❏ each board position has 3 possibilities: empty, black, white
❏ an estimated 1.2% of all board positions are legal

❏ Total number of possible board positions = 319x19x1.2% = 2.1x10170 > # atoms in 
universe

❏ So enumerating all possible board outcomes and scoring them won’t work
❏ Best approach before AlphaGo:

193



CNN also used in AlphaGo
❏ First off, why is Go so hard?

❏ larger board than chess (19x19)
❏ many more possible board outcomes than chess 

❏ each board position has 3 possibilities: empty, black, white
❏ an estimated 1.2% of all board positions are legal

❏ Total number of possible board positions = 319x19x1.2% = 2.1x10170 > # atoms in 
universe

❏ So enumerating all possible board outcomes and scoring them won’t work
❏ Best approach before AlphaGo:

❏ Tree search enhanced by policies that were trained to predict human expert’s moves

194



CNN also used in AlphaGo
❏ First off, why is Go so hard?

❏ larger board than chess (19x19)
❏ many more possible board outcomes than chess 

❏ each board position has 3 possibilities: empty, black, white
❏ an estimated 1.2% of all board positions are legal

❏ Total number of possible board positions = 319x19x1.2% = 2.1x10170 > # atoms in 
universe

❏ So enumerating all possible board outcomes and scoring them won’t work
❏ Best approach before AlphaGo:

❏ Tree search enhanced by policies that were trained to predict human expert’s moves
❏ “Weak amateur level play”

195



CNN also used in AlphaGo
❏ First off, why is Go so hard?

❏ larger board than chess (19x19)
❏ many more possible board outcomes than chess 

❏ each board position has 3 possibilities: empty, black, white
❏ an estimated 1.2% of all board positions are legal

❏ Total number of possible board positions = 319x19x1.2% = 2.1x10170 > # atoms in 
universe

❏ So enumerating all possible board outcomes and scoring them won’t work
❏ Best approach before AlphaGo:

❏ Tree search enhanced by policies that were trained to predict human expert’s moves
❏ “Weak amateur level play”

❏ AlphaGo combines tree search with RL executed with policy and value CNN 
networks

196



CNN also used in AlphaGo
❏ First off, why is Go so hard?

❏ larger board than chess (19x19)
❏ many more possible board outcomes than chess 

❏ each board position has 3 possibilities: empty, black, white
❏ an estimated 1.2% of all board positions are legal

❏ Total number of possible board positions = 319x19x1.2% = 2.1x10170 > # atoms in 
universe

❏ So enumerating all possible board outcomes and scoring them won’t work
❏ Best approach before AlphaGo:

❏ Tree search enhanced by policies that were trained to predict human expert’s moves
❏ “Weak amateur level play”

❏ AlphaGo combines tree search with RL executed with policy and value CNN 
networks
❏ Won 4 out of 5 games against Lee Sedol, second best player of Go in the world (by # of won 

championships)

197



AlphaGo algorithm details
❏ 3 CNNs - 2 for policy, 1 for value

198



AlphaGo algorithm details
❏ 3 CNNs - 2 for policy, 1 for value
❏ Input to CNNs: board position (19x19 image)

199



AlphaGo algorithm details
❏ 3 CNNs - 2 for policy, 1 for value
❏ Input to CNNs: board position (19x19 image)
❏ First policy CNN trained to select actions that predict human moves selected 

in a given state 

200



AlphaGo algorithm details
❏ 3 CNNs - 2 for policy, 1 for value
❏ Input to CNNs: board position (19x19 image)
❏ First policy CNN trained to select actions that predict human moves selected 

in a given state 
❏ previous methods used shallow classification methods to do this

201



AlphaGo algorithm details
❏ 3 CNNs - 2 for policy, 1 for value
❏ Input to CNNs: board position (19x19 image)
❏ First policy CNN trained to select actions that predict human moves selected 

in a given state 
❏ previous methods used shallow classification methods to do this

❏ Second policy CNN trained to select actions that maximize expected future 
reward (winning) on games between AlphaGo’s current policy strategy and a 
randomly selected previous iteration of the policy strategy

202



AlphaGo algorithm details
❏ 3 CNNs - 2 for policy, 1 for value
❏ Input to CNNs: board position (19x19 image)
❏ First policy CNN trained to select actions that predict human moves selected 

in a given state 
❏ previous methods used shallow classification methods to do this

❏ Second policy CNN trained to select actions that maximize expected future 
reward (winning) on games between AlphaGo’s current policy strategy and a 
randomly selected previous iteration of the policy strategy
❏ goal: to adjust the policy towards the correct goal of winning games, rather than predictive 

accuracy

203



AlphaGo algorithm details
❏ 3 CNNs - 2 for policy, 1 for value
❏ Input to CNNs: board position (19x19 image)
❏ First policy CNN trained to select actions that predict human moves selected 

in a given state 
❏ previous methods used shallow classification methods to do this

❏ Second policy CNN trained to select actions that maximize expected future 
reward (winning) on games between AlphaGo’s current policy strategy and a 
randomly selected previous iteration of the policy strategy
❏ goal: to adjust the policy towards the correct goal of winning games, rather than predictive 

accuracy

❏ Value CNN trained to predict the winner of games played by the RL policy 
network against itself

204



AlphaGo algorithm details
❏ 3 CNNs - 2 for policy, 1 for value
❏ Input to CNNs: board position (19x19 image)
❏ First policy CNN trained to select actions that predict human moves selected 

in a given state 
❏ previous methods used shallow classification methods to do this

❏ Second policy CNN trained to select actions that maximize expected future 
reward (winning) on games between AlphaGo’s current policy strategy and a 
randomly selected previous iteration of the policy strategy
❏ goal: to adjust the policy towards the correct goal of winning games, rather than predictive 

accuracy

❏ Value CNN trained to predict the winner of games played by the RL policy 
network against itself

❏ Finally, use the value and policy networks to reduce depth breadth of search 205



Getting started with deep learning
❏ A bit of an art

206



Getting started with deep learning
❏ A bit of an art
❏ Several deep learning libraries

207



Getting started with deep learning
❏ A bit of an art
❏ Several deep learning libraries

❏ Theano
❏ Written in python, compatible with GPUs

208



Getting started with deep learning
❏ A bit of an art
❏ Several deep learning libraries

❏ Theano
❏ Written in python, compatible with GPUs

❏ TensorFlow
❏ Similar to Theano but arguably more intuitive
❏ https://www.tensorflow.org/

209

https://www.tensorflow.org/
https://www.tensorflow.org/


Main takeaways
❏ Considering the sequential nature of time series data is important
❏ Ways to account for this time dependence is through models, such as hidden 

Markov models, Markov decision processes, and long short-term memory 
neural networks

❏ We don’t know why exactly deep learning works yet, but it’s increasingly more 
popular, both in industry and academia
❏ deep learning course at CMU taught by Ruslan Salakhutdinov in the Fall!

210



How can ML help neuroscientists?
❏ Deal with large number of sensors/recording sites

❏ investigate high-dimensional representations

211



How can ML help neuroscientists?
❏ Deal with large number of sensors/recording sites

❏ investigate high-dimensional representations
❏ classification (what does this high-dimensional data represent?)

212



How can ML help neuroscientists?
❏ Deal with large number of sensors/recording sites

❏ investigate high-dimensional representations
❏ classification (what does this high-dimensional data represent?)
❏ regression (how does it represent it? can we predict a different representation?)

213



How can ML help neuroscientists?
❏ Deal with large number of sensors/recording sites

❏ investigate high-dimensional representations
❏ classification (what does this high-dimensional data represent?)
❏ regression (how does it represent it? can we predict a different representation?)
❏ model selection (what model would best describe this high dimensional data?)

214



How can ML help neuroscientists?
❏ Deal with large number of sensors/recording sites

❏ investigate high-dimensional representations
❏ classification (what does this high-dimensional data represent?)
❏ regression (how does it represent it? can we predict a different representation?)
❏ model selection (what model would best describe this high dimensional data?)

❏ uncover few underlying processes that interact in complex ways
215



How can ML help neuroscientists?
❏ Deal with large number of sensors/recording sites

❏ investigate high-dimensional representations
❏ classification (what does this high-dimensional data represent?)
❏ regression (how does it represent it? can we predict a different representation?)
❏ model selection (what model would best describe this high dimensional data?)

❏ uncover few underlying processes that interact in complex ways
❏ dimensionality reduction techniques 216



How can ML help neuroscientists?
❏ Evaluate results

217



How can ML help neuroscientists?
❏ Evaluate results

❏ cross validation (how generalizable are our results?)

218



How can ML help neuroscientists?
❏ Evaluate results

❏ cross validation (how generalizable are our results?)
❏ nearly assumption-free significance testing (are the results different from chance?)

219



How can ML help neuroscientists?
❏ Evaluate results

❏ cross validation (how generalizable are our results?)
❏ nearly assumption-free significance testing (are the results different from chance?)

❏ Complex data-driven hypotheses of brain processing

220



How can ML help neuroscientists?
❏ Evaluate results

❏ cross validation (how generalizable are our results?)
❏ nearly assumption-free significance testing (are the results different from chance?)

❏ Complex data-driven hypotheses of brain processing
❏ advanced topics: latent variable models, reinforcement learning, deep learning

221



Thank you for your attention!
Please fill out the anonymous evaluation sheet -- your feedback is very important!

Looking forward to questions or follow-ups: 

mariya@cmu.edu

222


