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How can ML help neuroscientists?
❏ Evaluate results

❏ cross validation (how generalizable are our results?)
❏ nearly assumption-free significance testing (are the results different from chance?)

❏ Complex data-driven hypotheses of brain processing
❏ advanced topics: latent variable models, reinforcement learning, deep learning
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Look ahead to end of lecture: understanding the 
most recent AI feat of beating Go world champion

6Mnih et al., 2013 Silver et al., 2016 Nature 

http://www.youtube.com/watch?v=V1eYniJ0Rnk


Today: advanced topics!
❏ Latent variable models

❏ Hidden Markov models

❏ Reinforcement learning
❏ Deep learning

❏ Neural networks
❏ Recurrent NNs

❏ Long short-term memory networks
❏ Deep belief networks
❏ Convolutional neural networks

❏ AlphaGo: RL + deep learning!
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❏ Moving from treating all observations as independent from each other, to 
dependent

Importance of sequential data
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❏ Moving from treating all observations as independent from each other, to 
dependent

❏ Important, when considering sequential data, like we have in neuroscience:

Importance of sequential data
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❏ Moving from treating all observations as independent from each other, to 
dependent

❏ Important, when considering sequential data, like we have in neuroscience:
❏ Example: observation 1 = fMRI voxel activities in ROI 1 for TR 1
❏                 observation 2 = fMRI voxel activities in ROI 1 for TR 2
❏                 …
❏                 observation N = fMRI voxel activities in ROI 1 for TR N

Importance of sequential data
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❏ Moving from treating all observations as independent from each other, to 
dependent

❏ Important, when considering sequential data, like we have in neuroscience:
❏ Example: observation 1 = fMRI voxel activities in ROI 1 for TR 1
❏                 observation 2 = fMRI voxel activities in ROI 1 for TR 2
❏                 …
❏                 observation N = fMRI voxel activities in ROI 1 for TR N

Importance of sequential data
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❏ Moving from treating all observations as independent from each other, to 
dependent

❏ Important, when considering sequential data, like we have in neuroscience:
❏ Example: observation 1 = fMRI voxel activities in ROI 1 for TR 1
❏                 observation 2 = fMRI voxel activities in ROI 1 for TR 2
❏                 …
❏                 observation N = fMRI voxel activities in ROI 1 for TR N

Importance of sequential data
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What if there are latent processes?
❏ Dependence in observations may be due to dependence in latent states
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What if there are latent processes?
❏ Dependence in observations may be due to dependence in latent states

❏ Example: 
❏ underlying processes while subject is at rest in an fMRI
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What if there are latent processes?
❏ Dependence in observations may be due to dependence in latent states

❏ Example: 
❏ underlying processes while subject is at rest in an fMRI

❏ “attentive state” (A)
❏ “default state” (D)
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What if there are latent processes?
❏ Dependence in observations may be due to dependence in latent states

❏ Example: 
❏ underlying processes while subject is at rest in an fMRI

❏ “attentive state” (A)
❏ “default state” (D)

❏ voxel values for ROIs in certain TRs may depend on whether subject is in state A or D
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What if there are latent processes?
❏ Dependence in observations may be due to dependence in latent states

❏ Example: 
❏ underlying processes while subject is at rest in an fMRI

❏ “attentive state” (A)
❏ “default state” (D)

❏ voxel values for ROIs in certain TRs may depend on whether subject is in state A or D
❏ transitioning between states may help predict voxel values during next TR 
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Hidden Markov model (HMM)
❏ Observation space Ot∊ {x1,x2,...,xk}

❏ observed data
❏ can be discrete or real-valued
❏ example: voxel values for ROI 1 during one TR

18

...

o1 o2 on

s1 s2 sn



 

Hidden Markov model (HMM)
❏ Observation space Ot∊ {x1,x2,...,xk}

❏ observed data
❏ can be discrete or real-valued
❏ example: voxel values for ROI 1 during one TR

❏ Hidden state space St∊ {1,...,m} 
❏ latent states
❏ discrete 
❏ example: A (attentive state), D (default state)
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Hidden Markov model (HMM)
❏ Observation space Ot∊ {x1,x2,...,xk}

❏ observed data
❏ can be discrete or real-valued
❏ example: voxel values for ROI 1 during one TR

❏ Hidden state space St∊ {1,...,m} 
❏ latent states
❏ discrete 
❏ example: A (attentive state), D (default state)

❏ Observed states are usually shaded
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What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs
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What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations
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What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations
❏ hypothesis: at rest, the brain switches between an attentive and default state
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What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations
❏ hypothesis: at rest, the brain switches between an attentive and default state 

❏ test with HMM: given our hypothesis, how likely is the sequence of observed ROI voxel values 
{o1,..,on}

 ?
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What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations
❏ hypothesis: at rest, the brain switches between an attentive and default state

❏ test with HMM: given our hypothesis, how likely is the sequence of observed ROI voxel values 
{o1,..,on}

 ?

❏ Infer the best sequence of hidden states that led to the observations
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What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations
❏ hypothesis: at rest, the brain switches between an attentive and default state

❏ test with HMM: given our hypothesis, how likely is the sequence of observed ROI voxel values 
{o1,..,on}

 ?

❏ Infer the best sequence of hidden states that led to the observations
❏ Inferring what brain state the subject was in during each TR
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What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations
❏ hypothesis: at rest, the brain switches between an attentive and default state

❏ test with HMM: given our hypothesis, how likely is the sequence of observed ROI voxel values 
{o1,..,on}

 ?

❏ Infer the best sequence of hidden states that led to the observations
❏ Inferring what brain state the subject was in during each TR

❏ How are observations emitted from the hidden states? How does the model 
transition from one hidden state to another?
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What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations  
❏ hypothesis: at rest, the brain switches between an attentive and default state

❏ test with HMM: given our hypothesis, how likely is the sequence of observed ROI voxel values 
{o1,..,on}

 ? 

❏ Infer the best sequence of hidden states that led to the observations
❏ Inferring what brain state the subject was in during each TR    

❏ How are observations emitted from the hidden states? How does the model 
transition from one hidden state to another?
❏ Learn how the observed voxel values for a TR are related to the current brain state

28
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What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations   
❏ hypothesis: at rest, the brain switches between an attentive and default state

❏ test with HMM: given our hypothesis, how likely is the sequence of observed ROI voxel values 
{o1,..,on}

 ? 

❏ Infer the best sequence of hidden states that led to the observations 
❏ Inferring what brain state the subject was in during each TR      

❏ How are observations emitted from the hidden states? How does the model 
transition from one hidden state to another?   
❏ Learn how the observed voxel values for a TR are related to the current brain state
❏ Learn how the brain transitions between attentive and default states  29
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What can we use HMMs for?
❏ We start with only having observations

❏ e.g.  voxel values for ROI 1 during all TRs

❏ Test a hypothesis about the underlying processes in the brain that lead to the 
observations   Forward algorithm
❏ hypothesis: at rest, the brain switches between an attentive and default state

❏ test with HMM: given our hypothesis, how likely is the sequence of observed ROI voxel values 
{o1,..,on}

 ? 

❏ Infer the best sequence of hidden states that led to the observations 
❏ Inferring what brain state the subject was in during each TR      Viterbi algorithm

❏ How are observations emitted from the hidden states? How does the model 
transition from one hidden state to another?   Expectation-Maximization (EM)
❏ Learn how the observed voxel values for a TR are related to the current brain state
❏ Learn how the brain transitions between attentive and default states  30
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How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
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How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
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How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
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How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D
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How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D
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How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D
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How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D
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How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D

❏ But we don’t know what the hidden state values are!
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How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D

❏ But we don’t know what the hidden state values are!
❏ So how can we evaluate P(o1,...,on)?
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How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D

❏ But we don’t know what the hidden state values are!
❏ So how can we evaluate P(o1,...,on)?

❏ calculate P(o1,...,on) under all possibilities for {s1,...,sn} 
❏ and sum them since we don’t know which {s1,...,sn} is correct
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How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D

❏ But we don’t know what the hidden state values are!
❏ So how can we evaluate P(o1,...,on)?

❏ calculate P(o1,...,on) under all possibilities for {s1,...,sn} 
❏ and sum them since we don’t know which {s1,...,sn} is correct

❏ How many possibilities for {s1,...,sn}?
41
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How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D

❏ But we don’t know what the hidden state values are!
❏ So how can we evaluate P(o1,...,on)?

❏ calculate P(o1,...,on) under all possibilities for {s1,...,sn} 
❏ and sum them since we don’t know which {s1,...,sn} is correct

❏ How many possibilities for {s1,...,sn}? 2n
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How likely is the sequence of observed ROI voxel 
values {o1,..,on}?

 

❏ Hidden states {s1,...,sn} can take 2 values: A (attentive) or D (default)
❏ Assume that we already learned both the emissions P(oi|si) and        

transitions P(si+1|si) with EM
❏ Want to evaluate P(o1,...,on) under this model
❏ If we know what the values of s1,...,sn are, we quickly evaluate P(o1,...,on)

❏ example: if s1= A, s2= A,...,s3= D

❏ But we don’t know what the hidden state values are!
❏ So how can we evaluate P(o1,...,on)?

❏ calculate P(o1,...,on) under all possibilities for {s1,...,sn} 
❏ and sum them since we don’t know which {s1,...,sn} is correct

❏ How many possibilities for {s1,...,sn}? 2n

❏ forward algorithm is a clever way to do this 43
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❏ Key idea: recognize that there is a lot of overlap between possibilities for 
{s1,...,sn}, so instead of recalculating the whole probability for each possibility, 
store probabilities for smaller pieces of the sequence and reuse

Forward algorithm: computationally friendly way to 
calculate probability of observed sequence

44



❏ Key idea: recognize that there is a lot of overlap between possibilities for 
{s1,...,sn}, so instead of recalculating the whole probability for each possibility, 
store probabilities for smaller pieces of the sequence and reuse

❏ First subunits: P(s1=A)P(o1|s1=A) and P(s1=D)P(o1|s1=D)

Forward algorithm: computationally friendly way to 
calculate probability of observed sequence
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❏ Key idea: recognize that there is a lot of overlap between possibilities for 
{s1,...,sn}, so instead of recalculating the whole probability for each possibility, 
store probabilities for smaller pieces of the sequence and reuse

❏ First subunits: P(s1=A)P(o1|s1=A) and P(s1=D)P(o1|s1=D)
❏ All further subunits: sum of emission x transition x previous subunit

Forward algorithm: computationally friendly way to 
calculate probability of observed sequence
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Problem 2: infer best sequence of hidden states that 
results in the sequence of observations
❏ Viterbi algorithm: also relies on recursive computation using subunits
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Problem 2: infer best sequence of hidden states that 
results in the sequence of observations
❏ Viterbi algorithm: also relies on recursive computation using subunits
❏ Starting with the second hidden state, for each hidden state until the last one, 

we calculate the probability of the most likely path that ends in this hidden state
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Problem 2: infer best sequence of hidden states that 
results in the sequence of observations
❏ Viterbi algorithm: also relies on recursive computation using subunits
❏ Starting with the second hidden state, for each hidden state until the last one, 

we calculate the probability of the most likely path that ends in this hidden state
❏ For each of these probabilities, we record the previous hidden state in the most 

likely sequence => this enables us to follow the most probable path backwards 
once we’re at the end of the sequence
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Problem 3: learning HMM emissions and transitions
❏ So far, we’ve assumed that the emission and transition probabilities were 

already learned
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Problem 3: learning HMM emissions and transitions
❏ So far, we’ve assumed that the emission and transition probabilities were 

already learned
❏ But how do we do this? Expectation-maximization (EM)!
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Problem 3: learning HMM emissions and transitions
❏ So far, we’ve assumed that the emission and transition probabilities were 

already learned
❏ But how do we do this? Expectation-maximization (EM)!
❏ Start with random initializations of parameters, then iterate 2 steps:
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Problem 3: learning HMM emissions and transitions
❏ So far, we’ve assumed that the emission and transition probabilities were 

already learned
❏ But how do we do this? Expectation-maximization (EM)!
❏ Start with random initializations of parameters, then iterate 2 steps:

❏ E-step: fix parameters, find expected state assignments
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Problem 3: learning HMM emissions and transitions
❏ So far, we’ve assumed that the emission and transition probabilities were 

already learned
❏ But how do we do this? Expectation-maximization (EM)!
❏ Start with random initializations of parameters, then iterate 2 steps:

❏ E-step: fix parameters, find expected state assignments
❏ M-step: fix expected state assignments, update parameters
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Problem 3: learning HMM emissions and transitions
❏ So far, we’ve assumed that the emission and transition probabilities were 

already learned
❏ But how do we do this? Expectation-maximization (EM)!
❏ Start with random initializations of parameters, then iterate 2 steps:

❏ E-step: fix parameters, find expected state assignments
❏ M-step: fix expected state assignments, update parameters

❏ Very general algorithm for learning parameters in models with latent variables
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Latent variable models takeaways
❏ Used to analyze sequential data (such as time series)
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Latent variable models takeaways
❏ Used to analyze sequential data (such as time series)
❏ Hidden Markov model is an example of such a model, where the hidden 

states can take discrete values
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Latent variable models takeaways
❏ Used to analyze sequential data (such as time series)
❏ Hidden Markov model is an example of such a model, where the hidden 

states can take discrete values
❏ We can use HMMs for 3 main purposes:
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Latent variable models takeaways
❏ Used to analyze sequential data (such as time series)
❏ Hidden Markov model is an example of such a model, where the hidden 

states can take discrete values
❏ We can use HMMs for 3 main purposes:

❏ Testing a hypothesis about underlying processes in the brain
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Latent variable models takeaways
❏ Used to analyze sequential data (such as time series)
❏ Hidden Markov model is an example of such a model, where the hidden 

states can take discrete values
❏ We can use HMMs for 3 main purposes:

❏ Testing a hypothesis about underlying processes in the brain
❏ Inferring the best sequence of underlying processes in the brain that emits the observations
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Latent variable models takeaways
❏ Used to analyze sequential data (such as time series)
❏ Hidden Markov model is an example of such a model, where the hidden 

states can take discrete values
❏ We can use HMMs for 3 main purposes:

❏ Testing a hypothesis about underlying processes in the brain
❏ Inferring the best sequence of underlying processes in the brain that emits the observations

❏ Learning how the observations were emitted from the brain states, and how the brain 
transitions from one underlying state to another
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Latent variable models takeaways
❏ Used to analyze sequential data (such as time series)
❏ Hidden Markov model is an example of such a model, where the hidden 

states can take discrete values
❏ We can use HMMs for 3 main purposes:

❏ Testing a hypothesis about underlying processes in the brain
❏ Inferring the best sequence of underlying processes in the brain that emits the observations

❏ Learning how the observations were emitted from the brain states, and how the brain 
transitions from one underlying state to another

❏ SSM (state-space model) is another type of latent variable model that 
accounts for continuous hidden states
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❏ To learn, we need some teaching, or reward, signal

Can we model human learning with an HMM?
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Can we model human learning with an HMM?
❏ To learn, we need some teaching, or reward, signal
❏ What if we incorporate a notion of reward in the HMM?

64

 ...

o1 o2 o3

TR 1 TR 2 TR 3

s1 s2 s3

r1 r2 r3



Can we model human learning with an HMM?
❏ To learn, we need some teaching, or reward, signal
❏ What if we incorporate a notion of reward in the HMM?
❏ Now, we incorporate actions we can take to transition to other states in order 

to maximize our reward

65

a1 a2 an

 ...

o1 o2 o3

TR 1 TR 2 TR 3

s1 s2 s3

r1 r2 r3



Can we model human learning with an HMM?
❏ To learn, we need some teaching, or reward, signal
❏ What if we incorporate a notion of reward in the HMM?
❏ Now, we incorporate actions we can take to transition to other states in order 

to maximize our reward

66

a1 a2 an

 ...

o1 o2 o3

TR 1 TR 2 TR 3

s1 s2 s3

r1 r2 r3

HMM



Can we model human learning with an HMM?
❏ To learn, we need some teaching, or reward, signal
❏ What if we incorporate a notion of reward in the HMM?
❏ Now, we incorporate actions we can take to transition to other states in order 

to maximize our reward

67

a1 a2 an

 ...

o1 o2 o3

TR 1 TR 2 TR 3

s1 s2 s3

r1 r2 r3

HMM

Markov Decision Process 
(MDP)



Can we model human learning with an HMM?
❏ To learn, we need some teaching, or reward, signal
❏ What if we incorporate a notion of reward in the HMM?
❏ Now, we incorporate actions we can take to transition to other states in order 

to maximize our reward

68

a1 a2 an

 ...

o1 o2 o3

TR 1 TR 2 TR 3

s1 s2 s3

r1 r2 r3

HMM

Markov Decision Process 
(MDP)

Partially Observable 
Markov Decision Process 
(POMDP)



Reinforcement learning (RL): learning how to take 
the best actions to maximize expected future reward

❏ Delayed reward vs immediate reward
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❏ Reinforcement learning introduces the notion of delayed reward and uses it to 

learn the best actions that will maximize this future reward
❏ Two ways to learn the best policy: 

❏ Q-learning
❏ Temporal Difference (TD) learning

❏ Error in value prediction using TD-learning is the best computational model of dopamine 

release in monkeys during anticipation of future reward => hypothesis that dopamine 
does reward prediction (Schultz et al. Science, 1997)

❏ Recent advances in RL: combining it with deep learning!
❏ learning deep policy and value networks
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Deep learning!
❏ Loosely inspired by neural connections in the brain
❏ Goal: learn hierarchy of features

❏ higher level features are formed by lower level features

❏ Used in neuroscience to study intermediate stages                                                                                                           
❏ of representations
❏ There are a few important types: 

❏ Neural networks
❏ Recurrent neural networks (RNNs)

❏ Long short-term memory network (LSTM)
❏ Deep belief networks (DBNs)
❏ Convolutional neural networks (CNNs)
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What is a good activation function f?
❏ Want non-linear f
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What is a good activation function f?
❏ Want non-linear f
❏ Some typical examples:

❏ logistic (or sigmoid) function

❏ hyperbolic tangent function

❏ rectified linear function
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Perceptron: simplest neural network

❏ activation function is just a threshold at 0 (checks for the sign of the weighted 
input sum)

❏ no hidden layer
❏ goal: given the input x and label y, find weights w such that y = sgn(wTx)
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How do we learn the weights in the perceptron?
❏ Key idea: find classification error and update          

weights to reduce this error

❏ step 1: initialize w0,...,wN randomly
❏ step 2: let xk be a training data instance misclassified by 

w(t-1)
❏ step 3: if there is such an instance, calculate 

classification error  ε(t) = yk - sgn(w(t-1)Txk)
❏ step 4: account for error by updating weights:

❏ w(t) = w(t-1) + ᶓε(t)xk

❏ step 5: t = t+1, end when there are no misclassifications
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❏ Additional layers (not input or output) are called “hidden” layers

❏ Still need to learn weights W, but now we have multiple layers
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Learning weights with multiple layers: 
backpropagation of error
❏ When there is a misclassification, different neurons have different amount of 

responsibility for it
❏ Key observation: the misclassification error for a neuron in layer m can be 

calculated from the misclassification errors for all of the  neurons in layer m+1
❏ because the network is fully connected

❏ So we can calculate the final misclassification error and propagate is 
backward

❏ Update weights according to the error
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Neural networks for sequential data: recurrent NNs
❏ In sequential data, history can help predict the future
❏ Would like to explicitly capture state history in the neural 

network
❏ Add a recurrent state

❏ In regular RNNs, the recurrent state is overwritten 
frequently
❏ Good if important events happen close together

❏ But what if there are large delays before important events?
❏ Long short-term memory (LSTM) networks!

❏ Best known result in connected handwriting recognition
❏ Also used for automatic speech recognition

❏ In 2016, Google, Apple, Microsoft, Baidu reveal LSTMs as 
fundamental components in their technologies 146
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LSTMs: remembering values for arbitrary length of 
time
❏ Contains LSTM blocks

❏ each block contains gates that determine 

when the input is significant enough to 
remember

❏ LSTMs, like regular RNNs, can be 
trained with backpropagation
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3 main problems with backpropagation
❏ Problem 1: random initialization of weights can lead to bad local minimum
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3 main problems with backpropagation
❏ Problem 1: random initialization of weights can lead to bad local minimum
❏ Problem 2: learning time does not scale well with number of hidden layers => 

slow
❏ Problem 3: need a lot of data for good estimates of weights when we start 

from random initializations and to calculate classification error, we need labels 
=> need a lot of labeled data, which is often scarce
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layers separately without using labeled data and backpropagation
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❏ DBNs use a technique called “pre-training” to train each pair of successive 

layers separately without using labeled data and backpropagation
❏  uses the resulting pre-trained weights to initialize the DBN weights for the task

❏ avoids random initialization (problem 1 of backpropagation)
❏ reduces need for a lot of labeled data (problem 3)

❏ Once the DBN is pre-trained, it is fine-tuned with backpropagation for a 
particular task
❏ reduces the learning time of backprop (problem 2)

❏ So why is it only a partial solution?
❏ pre-training is done in an unsupervised way, in which the objective is to minimize some 

reconstruction error

❏ in practice, many times weights learned in this way are not close enough to the ones needed 
for a classification task, and bad local minima are not avoided 165



Another partial solution: convolutional neural 
networks (CNNs)
❏ Inspired by the structure of the visual system (receptive fields of simple and 

complex cells)
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Another partial solution: convolutional neural 
networks (CNNs)
❏ Inspired by the structure of the visual system (receptive fields of simple and 

complex cells)
❏ Sparse connections between layers (not fully connected like regular NNs)

❏  reduces learning time (problem 2)

❏ Often, researchers take an already trained CNN on a related task and fine-
tune it for the specific task
❏ avoids random initialization of weights (problem 1)
❏ reduces need for labeled data for learning (problem 3)

❏ So why only partial solution? 
❏ a CNN trained on a related task is not always available => back to problems 1 and 3
❏ though, for vision tasks (e.g. classifying images), a good CNN is available
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CNN: alternating convolutional and downsampling 
layers

❏ Restricted connections => makes learning the weights more tractable
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CNN: alternating convolutional and downsampling 
layers

❏ Restricted connections => makes learning the weights more tractable
❏ Convolutional layers = each neuron applies some kernel to its receptive field 
❏ Subsampling layers = reduce dimensionality, maintain translational invariance
❏ Shared weights between feature maps reduce number of parameters to learn
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Most frequently used CNN is trained on ImageNet
❏ ImageNet is a database of 15M images collected from the web
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Most frequently used CNN is trained on ImageNet
❏ ImageNet is a database of 15M images collected from the web
❏ 22k categories
❏ labels provided by people on MTurk
❏ RGB images (not black and white)
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CNN results in ImageNet classification challenge
❏ 1k categories, 1.2M training images, 50k validation, 150k testing
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CNN also used in AlphaGo
❏ First off, why is Go so hard?

❏ larger board than chess (19x19)
❏ many more possible board outcomes than chess 

❏ each board position has 3 possibilities: empty, black, white
❏ an estimated 1.2% of all board positions are legal

❏ Total number of possible board positions = 319x19x1.2% = 2.1x10170 > # atoms in 
universe

❏ So enumerating all possible board outcomes and scoring them won’t work
❏ Best approach before AlphaGo:

❏ Tree search enhanced by policies that were trained to predict human expert’s moves
❏ “Weak amateur level play”

❏ AlphaGo combines tree search with RL executed with policy and value CNN 
networks
❏ Won 4 out of 5 games against Lee Sedol, second best player of Go in the world (by # of won 

championships)
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AlphaGo algorithm details
❏ 3 CNNs - 2 for policy, 1 for value
❏ Input to CNNs: board position (19x19 image)
❏ First policy CNN trained to select actions that predict human moves selected 

in a given state 
❏ previous methods used shallow classification methods to do this

❏ Second policy CNN trained to select actions that maximize expected future 
reward (winning) on games between AlphaGo’s current policy strategy and a 
randomly selected previous iteration of the policy strategy
❏ goal: to adjust the policy towards the correct goal of winning games, rather than predictive 

accuracy

❏ Value CNN trained to predict the winner of games played by the RL policy 
network against itself

❏ Finally, use the value and policy networks to reduce depth breadth of search 205
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Getting started with deep learning
❏ A bit of an art
❏ Several deep learning libraries

❏ Theano
❏ Written in python, compatible with GPUs

❏ TensorFlow
❏ Similar to Theano but arguably more intuitive
❏ https://www.tensorflow.org/
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Main takeaways
❏ Considering the sequential nature of time series data is important
❏ Ways to account for this time dependence is through models, such as hidden 

Markov models, Markov decision processes, and long short-term memory 
neural networks

❏ We don’t know why exactly deep learning works yet, but it’s increasingly more 
popular, both in industry and academia
❏ deep learning course at CMU taught by Ruslan Salakhutdinov in the Fall!
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How can ML help neuroscientists?
❏ Evaluate results

❏ cross validation (how generalizable are our results?)
❏ nearly assumption-free significance testing (are the results different from chance?)

❏ Complex data-driven hypotheses of brain processing
❏ advanced topics: latent variable models, reinforcement learning, deep learning
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Thank you for your attention!
Please fill out the anonymous evaluation sheet -- your feedback is very important!

Looking forward to questions or follow-ups: 

mariya@cmu.edu
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